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Ⅰ. Introduction



Background

 Hearing-impaired listeners find it difficult to understand 

speech in noisy environments. 

 In these situations, it is difficult to focus a desired sound.

 Unfortunately, current hearing aids are often ineffective in 

these situations.

The purpose of this study:

Improving speech communication for hearing-impaired

persons in noisy environments using hearing aids. 

Crowded restaurant

• Speech

• Background music

• Clatter of dishes

︙
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To focus a target sound

 We consider a multi-microphone system in this 

study.

 Beamforming is one of the familiar technique for 

solving this problem, however, a perfect voice 

activity detection (VAD) or prior information of a 

target sound source are required.

 Blind source separation (BSS) is an effective 

technique to extract a desired source without

VAD or prior information of a target source.

5

Source signals Mixtured Separated



Blind source separation (BSS) technique

 For convolutive mixtures, independent vector analysis 

(IVA) [Kim2006, Hiroe2006] in the frequency domain have 

been developed as a standard technique of the BSS.

 There is a state-of-the-art approach for the IVA: 

Auxiliary-function-based IVA (AuxIVA) [Ono2011]

Fast convergence speed,  Low calculation cost,  No permutation ambiguity

 However, frequency-domain BSSs (including AuxIVA) 

have a long algorithmic delay of at least one frame length. 

 We have proposed a low-latency algorithm for real-time 

BSS based on the online AuxIVA [Sunohara 2017].  
( Algorithmic delay < 10 ms,  flame length 4096@16 kHz) 
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Directional microphones + Low-latency AuxIVA ?

 Bilateral directional microphones have been widely used 

in actual hearing aids to improve the SNR of front 

speech signals.

 We investigate the separation performance of binaural 

BSS based on the low-latency online AuxIVA with 

directional microphones. 
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Binaural BSS based on the 

low-latency online AuxIVA

?

Directional microphones

BTE-type
hearing aids

Source signals Mixtured Separated
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Ⅱ. Low-latency real-time BSS



Overview of online AuxIVA [Taniguchi 2014]
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(Supposing a spherical laplace distribution)

Demixing Matrix 𝑾 is estimated to separate 𝒚1
and 𝒚2 independently with considering higher-

order correlation between frequency bins.

Cost function

Weighted covariance matrix update Demixing matrix update



Algorithmic delay of the frequency-domain BSS
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Block diagram of the standard frequency-domain BSS (including AuxIVA)
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Outputted

1/4 overlap-add

Output signal is 

obtained by sum of 4 frames.

Image of the algorithmic delay for frequency-domain BSS

This part can be calculated after 

processing the frame E.

Algorithmic delay is equal to 

the frame length.

Frame length: 4096 samples

→ Algorithmic delay: 256 ms
(16 kHz sampling frequency)
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Low-latency online AuxIVA [Sunohara 2017]

 For separating the sources using quasi-causal FIR filters

in the time domain.
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Block diagram of a low-latency version of the online AuxIVA
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Quasi-causal FIR coeffs.



Realization as quasi-causal FIR filter

12

Shifting 𝑁𝑑 samples

𝑁𝑑

Truncating non-causal 

components

Original demixing

FIR filter coefficients

෥𝑤𝑘𝑙(𝑛; 𝜏)

Shifted and truncated

demixing FIR filter 

coefficients

Total length: Τ𝑁𝑤 2 + 𝑁𝑑

ഥ𝑤𝑘𝑙 (𝑛; 𝜏)

Algorithmic

Delay

𝑁𝑑 samples

→ 10 ms

Algorithmic

Delay
Τ𝑁𝑤 2 samples

→ 128 ms

𝐹𝑠: 16 kHz,   Frame length 𝑁𝑤: 4096,   Number of shifting 𝑁𝑑: 160 

Τ𝑁𝑤 2 samples

Causal

components

Non-causal

components

Shifted

Shifted and 

truncated



Causality of demixing impulse response

 If all the non-causal components of the demixing FIR 

filter are originally zero, the algorithmic delay of the 

system can theoretically be zero without degradation.

 For simple model consisting of two sources and two 

mics, a theoretical sufficient condition for the ideal 

separation filters to be causal is obtained as ..
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Simple model

𝑎𝑘 = 𝑎 𝜃𝑘 : amplitude ratio ..

𝜏𝑘 = 𝜏 𝜃𝑘 : time difference ..

of the second channel relative to the first 

channel for a source with direction 𝜃𝑘.

“An earlier channel is louder.”

→ All non-causal components become 0.

Observation

Source

𝜃1 𝜃2 1  2

 1
 2

Source

Observation

Separation

[Sunohara 2017]

(2)



Demonstration
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Ⅲ. Directional microphone
in hearing aids



Directional microphone in hearing aids

 Directivity in a hearing aid is 

produced by a pair of omnidirectional 

microphone.

 When 𝜏𝑟 = 𝑑/𝑐, the directional 

pattern becomes cardioid.

 Sensitivity of the response at the 

lower frequencies is attenuated by

6 dB / octave.

 These spatial directional responses 

may affect the causality of the 

demixing impulse response

 Separation performance of the low-

latency BSS ? → investigated
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Ⅳ. Evaluation



Evaluation  - experimental setup

Binaural BTE-type hearing aids with omni / directional mics

Meeting room (5.0✕10.0✕2.7 m)
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Evaluation  - conditions
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 Sources: RWCP Japanese News Speech Corpus

(Signal length: 30 s ✕ 10 set for each direction)

 Microphone spacing: 18cm

 Microphone: Omnidirectional / Directional

 Sampling frequency: 16 kHz

 Frame length: 4096 samples

 Frame shift: 1024 samples (75 % Overlap)

 Window function: Hanning

 Evaluation index: Signal-to-interference ratio (SIR)

Low-latency AuxIVA

128 ms

Low-latency AuxIVA

10 ms

FIR coeff. shift: Nd 2048 samples 160 samples

Algorithmic delay 128 ms 10 ms



Compensation for directional response

 For fair comparison, it is necessary to compensate the difference in 

the sensitivity response associated with the directivity.

 We derive a compensation filter by minimizing the following cost 

function as post-processing :

: STFT of the front mic, : Compensation filter

: Separated

signals

Averaged amplitude responses of 

the front mic(omni) and 

separated(directional) signal

Amplitude response of 

Compensated filter ck(ω)

Averaged amplitude responses of 

the front mic(omni) and

compensated separated signal



Results
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Discussion
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SIR improvement with omni / directional microphones

 Separation performance with directional microphone for 

the front source is almost same as that with 

omnidirectional microphone.

 Separation performance with directional microphone for 

non-front source is better than that with omnidirectional 

microphone.
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Conclusion

 We evaluated the separation performance of 

low-latency online AuxIVA with directional 

microphones for binaural hearing aids.

 The averaged SIR of the low-latency (10 ms) 

AuxIVA with directional microphone was 9.0 dB, 

which was 1.0 dB better than that with 

omnidirectional microphones.

 Future work:

 Listening tests to verify the proposed system.

 Prototyping the real-time system.
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Thank you for your attention !!
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