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Abstract
Speaker identification is still challenging issue for cochlear im-

plant (CI) users due to the poor spectral cue provided by the CI

device. To optimize CI systems for the users, it is important

to understand the role of temporal modulation cues in speaker

identification, as the CI device provides temporal modulation

cues as primary cues. This study investigates the relative con-

tributions of spectral and temporal cue on speaker identification

by using noise-vocoded speech (NVS) as a CI simulation. In

the experiment, speaker identification was conducted in normal-

hearing listeners as a function of the number of channels (4, 8,

and 16) and upper limitation of envelope frequency (0, 0.5, 1, 2,

4, 8, 16, 32, and 64 Hz) in NVS. The number of channels and

upper limitation of envelope frequency present the spectral and

temporal resolution of NVS separately. Results showed that the

performance of speaker identification was not affected by spec-

tral resolution significantly, at least in the limited set of stimuli

in the present study. In addition, the results also showed that

the performance was more sensitive to temporal resolution. It is

suggested that temporal modulation cues contribute to speaker

identification and have the potential to improve speaker identi-

fication if enhanced.

Index Terms: temporal modulation cue, speaker identification,

noise-vocoded speech, cochlear implant

1. Introduction

The temporal envelope of speech has been proved to be an im-

portant cue in perceiving linguistic information included in the

speech. Shannon et al. showed that the presentation of a dy-

namic temporal pattern in only a few broad spectral regions is

sufficient for listeners to the recognize of linguistic information

[1]. The modulation frequency bands from 4 to 16 Hz have been

shown to be important regions in speech recognition [2]. Also,

cochlear-implant (CI) users can achieved good performance in

speech recognition, as the CI device can provide sufficient tem-

poral cues. However, human speech includes not only linguistic

information, but also nonlinguistic information such as speaker

individuality. CI users cannot accurately identify speakers as

the CI device provides poor spectral cues [3].

To optimize CI systems for their users, the role of temporal

modulation cues in speaker identification must be understood. It

is necessary to know which aspects of the temporal modulation

cues have the potential to improve speaker identification if en-

hanced. Luo and Fu successfully enhanced the tone recognition

on the NVS scheme by manipulating the amplitude envelope to

more closely resemble the F0 contour [4]. Their results showed

the possibility of enhancing the recognition of nonlinguistic in-

formation by modifying the temporal envelope.

Traditional research about speaker identification by humans

has focused on spectral cues based on speech production. The

formant frequencies have been found to carry not only informa-

tion about vowels but also information regarding speaker indi-

viduality [5]. Kitamura et al. indicated that speaker individu-

ality exists mainly in the frequency bands higher than 2212 Hz

of the speech spectral envelope [6]. The fundamental frequency

contours are also shown to be important cues in speaker iden-

tification [7]. Generally, the speaker individualities related to

fundamental frequency and spectral envelope can be thought of

as results of the individual differences of vocal organs. Unfortu-

nately, current CI devices cannot encode the spectral and funda-

mental frequency information of speech sufficiently for speaker

identification.

As CI listeners using the temporal envelope of speech as

a primary cue, Vongphoe and Zeng evaluated whether tempo-

ral cues are sufficient to support both speech recognition and

speaker identification [3]. Their results showed a disassociation

between speech and speaker recognition using primarily tem-

poral cues: CI users performed well at vowel recognition but

poorly at speaker recognition. On the other hand, Gonzalez and

Oliver investigated speaker identification as a function of the

number of channels in both noise and sin-wave vocoded speech

as CI simulations [8]. The performance of speaker identifica-

tion was shown to be poorer with fewer number of channels

of noise-vocoded speech (NVS). However, Krull et al. showed

that training resulted in improved identification of speakers in

CI simulations [9]. Moreover, child CI users succeeded in dif-

ferentiating their mothers’ utterances from those of other peo-

ple [10]. CI users’s differentiation of speakers was facilitated

by long-term familiarity. It is suggested that the temporal mod-

ulation information has possibility to be an effective cue for CI

users to distinguish speakers.

In a previous study, the relative contributions of spectral and

temporal cues in vocal emotion recognition for NVS is clarified

by varying the the number of channels and upper limitation of

envelope frequency systematically [11]. As the result, the tem-

poral resolution of NVS affected the vocal emotion recognition

significantly. Moreover, we examined word and speaker recog-

nition using NVS while systematically varying the upper limit

of the modulation frequency [12]. The results suggested that

the temporal resolution of NVS should contribute to the speaker

recognition. However, the role of temporal cues in speaker iden-

tification is still unknown.

This paper aims to clarify the role of temporal cues in

speaker identification with NVS as a CI simulation. In the

experiment, speaker identification was conducted by normal-

hearing listeners as a function of the number of channels (4, 8,

and 16) and upper limitation of envelope frequency (0, 0.5, 1,

2, 4, 8, 16, 32, and 64 Hz) in NVS. The number of channels

and upper limitation of envelope frequency present the spectral

and temporal resolutions of NVS separately. The experimental
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Figure 1: Signal processing method for noise-vocoded speech. BPF: bandpass filter; LPF: low-pass filter; NBN: narrow-band noise

paradigm used in this study can clarify the important modula-

tion frequency band for speaker identification. The potential to

improve speaker identification by enhance the temporal modu-

lation cues is then discussed.

2. Speech data and signal processing

2.1. Speech data

The speech data used in this study were selected from the ATR

Japanese speech database set C and recorded at a 20 kHz sam-

pling frequency. Each sentence was uttered for about 4 to 5

seconds.

In this study, the XAB method was used in the speaker iden-

tification experiment. In the XAB method, one trial consists of

three different speech signals (X, A, and B). The speakers of

A and B are different, and the speaker of X is also the speaker

of either A or B. Participants are asked to select which speaker,

A or B, is more similar to the speaker of X. It is assumed that

the similarity of a speaker pair will affect the results of experi-

ment. The speaker pair with high similarity may be difficult to

be distinguish, even when the spectral and temporal cues were

preserved. On the contrary, the speaker pair with low similar-

ity may be still easy to be distinguish, even if the cues related

to speaker identification were reduced. This kind of bias is not

desirable.

Kitamura et al. measured the perceptual similarity of

speaker individualities of 20 female and 20 male Japanese

speakers in ATR speech database set C [13]. Two same sen-

tences with different speakers were presented to normal-hearing

listeners, and the listeners were asked to select the similarity of

these two speakers from 1 to 5. The perceptual similarity of

speakers is considerable to generate some undesirable bias in

the XAB test. Therefore, in order to remove the impact of sim-

ilarity, the speaker pairs of speech data used in this study have

perceptual similarity closest to the average value of perceptual

similarity (female: 1.87, and male: 1.99) measured by Kitamura

et al. [13]. The 5 female and 5 male speaker pairs used in this

study and their perceptual similarities are shown in Table 1. All

20 speakers are different and the speakers of each pair have the

same gender. 6 sentences of each speaker were used to generate

the NVS stimuli.

2.2. Signal processing

Figure 1 schematically illustrates a schematic diagram of the

signal processing to generate NVS. First, to reduce the effect

of the average intensity, the active speech levels of all speech

signals were normalized to −26 dBov by using the P.56 speech

Table 1: Speaker pairs selected from ATR database and their

average similarity index measured by Kitamura et al. [13]. Left

and right halves show female and male speaker pairs, respec-

tively.

Speaker pair Similarity Speaker pair Similarity

F407 F306 1.87 M509 M318 1.99

F611 F418 1.86 M603 M409 1.98

F606 F605 1.875 M508 M113 2.00

F720 F213 1.88 M519 M211 2.01

F709 F614 1.83 M520 M517 1.97

voltmeter [14]. Speech signal was first divided into several fre-

quency bands with a band-pass filterbank. The bandwidth and

boundary frequencies of the band-pass filters (6th-order Butter-

worth Infinite Impulse Response (IIR) filter) were defined using

ERBN (Equivalent Rectangular Bandwidth) and ERBN-number

scale [15]. The ERBN-number scale is comparable to a scale

of distance along the basilar membrane so that the frequency

resolution of the auditory system can be faithfully replicated

by dividing frequency bands in accordance with the ERBN-

number. The relationship between ERBN-number and acoustic

frequency is defined as follows:

ERBN − number = 21.4log10

(

4.37f

1000
+ 1

)

(1)

where f is acoustic frequency in Hz. The boundary frequen-

cies of the band-pass filters were defined from 3 to 35 ERBN-

number with bandwidth as 2, 4, or 8 ERBN. Therefore, the

numbers of channels of the band-pass filterbank were 16, 8, or

4. The number of channels presents the frequency resolution of

NVS: higher frequency resolution is obtained with more num-

ber of channels.

Then, the temporal envelope of the output signal from each

band-pass filter was extracted by using a Hilbert transformation

and performing a low-pass filter (2nd-order Butterworth IIR fil-

ter). The cut-off frequency of the low-pass filter determined the

upper limit of envelope frequency that presents the temporal

resolution of NVS. To investigate the role of temporal envelope

cues for speaker identification, the conditions of the cut-off fre-

quencies of the low-pass filter were 0.5, 1, 2, 4, 8, 16, 32, and 64

Hz. Moreover, there was an additional “0” Hz condition where

only the direct current component of the Hilbert envelope was

extracted.

Finally, the temporal envelope in each channel served to

amplitude modulation with the band-limited noise which was
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generated by band-pass filtering white noise at the same bound-

ary frequency. All amplitude-modulated band-limited noises

were summed to generate the NVS stimulus. The NVS was

widely used as a CI simulation, as the spectral cues of speech

were reduced.

3. Experimental procedure

Nine native Japanese speakers (two female and seven male) par-

ticipated in this experiment. All participants had normal hear-

ing (hearing losses of the participants were below 12 dB in the

frequency range from 125 to 8000 Hz).

This experiment was carried out by using the XAB method.

One trial consisted of three different speech signals (X, A, and

B). The contents of stimuli X, A, and B were as follows:

• X: Noise-vocoded speech

• A: Noise-vocoded speech with the same speaker as X

• B: Noise-vocoded speech with a different speaker from

X.

Participants were asked to compare the speakers of A and B

with the speaker of X to select which speaker was more similar

to the speaker of first speech X. Both stimulus with XAB and

XBA orders were presented to counterbalance any effects due

to the order of presentation. All the speaker pairs of A and B

are shown in the Table 1.

A total of 3 different number of channels (4, 8, and 16)

and 9 upper limits of envelope frequency (0, 0.5, 1, 2, 4, 8,

16, 32, and 64 Hz) created 18 NVS conditions. The original

speech was also presented as a control condition. The partici-

pants were allowed to listen to each stimulus only once. Before

the experiment, 10 stimuli were presented to the participants to

familiarize participants with the CI simulation and the experi-

mental environment. The stimuli used in the experiment were

different from that used in the practice. The number of stimuli

was 560 and all stimuli were presented totally randomized.

The experiment was conducted while the participants were

in a sound-proof room. The sound pressure level of background

noise was lower than 25.8 dB. The stimuli were simultane-

ously presented to both ears of a participant through a PC, au-

dio interface (RME, Fireface UCX), and a set of headphones

(SENNHEISER HDA 200). The sound pressure levels were

calibrated to be the same among participants by using a head

and torso simulator (B&K, type 4128) and sound level meter

(B&K type 2231).

4. Results

Figure 2 shows the average value of speaker recognition rates,

and the error bars indicate ±1 standard error of the mean. Under

the original speech condition, the recognition rate was close to

95 %. Participants performed nearly perfectly in speaker iden-

tification with the original speech. The results of NVS stimuli

showed that the performance of speaker identification improved

as the upper limit of envelope frequency increased. The results

for 4-band NVS were lower than 8 or 16-band NVS at some

upper limits of envelope frequency. However, the performance

was not obviously affected by the number of channels.

A repeated-measures analysis of variance (ANOVA) was

conducted on the results with the number of channels and up-

per limit of envelope frequency as the factors. It is confirmed

that there was a significant main effect of the upper limit of

envelope frequency (F (8, 64) = 23.8631, p < 0.01). How-

ever, there was no significant main effect of the number of
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Figure 2: Speaker recognition rates in all 27 NVS conditions

and original speech condition. Error bars indicate ±1 standard

error of the mean.

bands (F (2, 16) = 3.3230, p = 0.29) and there was also no

significant interaction between the two factors (F (16, 128) =
1.1608, p = 0.16). These results showed that the performance

of speaker identification was significantly affected by the tem-

poral resolution, which suggest that temporal modulation cues

contribute to speaker identification. The performance was less

sensitive to the spectral resolution, however, at least in the lim-

ited set of stimuli in the present study.

5. Discussion

5.1. Effect of spectral resolution

The speaker identification rates of 4-band NVS are lower in

some conditions of the upper limit of envelope frequency. How-

ever, the number of channels did not affect the performance of

speaker identification significantly. These results were different

from the results of previous studies in which the performance

was improved as the number of channels increased [3][8]. One

difference between the present study and previous studies is that

the upper limit of envelope frequencies in this study was lower.

In previous studies, the cut-off frequencies of the low-pass fil-

ter were 500 Hz [3] and 160 or 400 Hz [8]. The modulation

frequency bands between about 50 and 500 Hz are related to

the periodicity information about fundamental frequency [16],

which is not included in the stimuli used in the present study.

One possible explanation may be that the temporal cues related

to the periodicity information in higher modulation frequency

bands are more sensitive to the number of channels. The main

target of this study is to clarify the role of temporal cues in lower

modulation frequency bands that include the information about

variations of intensity, duration, attack, decay, and segmental

cues of speech.

5.2. Effect of upper limit of envelope frequency

This study is intended to clarify the role of temporal modulation

cues in speaker identification. Specifically, the important mod-

ulation frequency bands for speaker identification are investi-

gated. To identify the important modulation frequency bands, a
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(b) 8 bands
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Figure 3: Speaker recognition rates in each condition of number of channels and their sigmoid fitting lines.

sigmoid function was used to fit the data of the experiment. The

sigmoid function was mathematically defined as follows:

y =
a

1 + eb(x−c)
+ d (2)

where x is the upper limit of envelope frequency and y is the

percent-correct scores. The parameters a, b, c, and d were cal-

culated on the basis of the method of least squares. Moreover,

the upper limit of envelope frequency at which 90% of the per-

formance plateau was defined as a knee point. The results of

fitting lines and knee points of each condition of the number of

channels are shown in Fig. 3. The coefficients of determina-

tions R2 of the fitting results in 4, 8, and 16-band NVS were

0.86, 0.95, and 0.93.

The knee point of 4-band NVS was about 20.09 Hz which

was higher than those of 8-band NVS (4.96 Hz) and 16-band

NVS (7.60 Hz) . As the spectral cues provided by 4-band NVS

was poor, participants may primarily use the temporal modu-

lation cues to recognize the speaker rather than spectral cues.

However, it still should be mentioned that there was no signifi-

cant interaction between the number of channels and the upper

limit of envelope frequency. More Xu and Pfingst measured

both consonant and vowel recognition as a function of the num-

ber of channels (1 to 16) and upper limit of envelope frequency

(1 to 512) [17]. The knee points of vowel recognition in dif-

ferent numbers of channels conditions are all below about 4

Hz. The knee points of consonant recognition are from 4 to

16 Hz, which are closer to the knee points for speaker identi-

fication in this study. Tachibana et al. conducted a experiment

of NVS sentence recognition with various of upper limits of

envelope frequency [18]. They found that an increase in the up-

per limit of envelope frequency from 4 to 8 Hz improved the

correct response rate more that increasing the upper limit of en-

velope frequency from 8 to 16 Hz. Both studies showed that the

duration and segmental cues included in such modulation fre-

quency band below about 16 Hz are important in the perception

of linguistic information. In this study, these duration and seg-

mental cues of the temporal envelope are also suggested to be

used in speaker identification. These segmental cues related to

the rhythm, tempo, and the speaking style of the speaker which

should be different with different speakers.

The results of this paper have shown that the temporal mod-

ulation cues contribute to speaker identification and that the

temporal modulation information below about 20 Hz seems to

be important. In the future, the modulation spectral features

[19] related to speaker individuality and the effect of modify-

ing such modulation spectral on speaker identification will be

investigated. In a previous study, we confirmed that the vocal

emotion of NVS can be converted by modifying the modulation

spectrogram of temporal envelope [20]. Whether the speaker in-

dividuality information of NVS can be converted by modifying

the modulation spectrogram should also be discussed further.

6. Summary

This study aimed to clarify the role of temporal cues in speaker

identification with noise-vocoded speech (NVS) as a cochlear

implant (CI) simulation. Speaker identification was conducted

by normal-hearing listeners as a function of the number of chan-

nels (4, 8, and 16) and the upper limitation of envelope fre-

quency (0, 0.5, 1, 2, 4, 8, 16, 32, and 64 Hz) in NVS. The result

showed that speaker identification rates improved significantly

as the upper limit of envelope frequency increased. However,

the performance was not obviously affected by the number of

channels. The modulation frequency bands below about 20 Hz

were shown to be important in speaker identification with 4-

band NVS. In conclusion, it is suggested that temporal mod-

ulation cues contribute to speaker identification and have the

potential to improve speaker identification if enhanced. It is

important to understand not only which parts but also exactly

what kinds of features of temporal envelope have possibility to

be important cues for speaker identification.
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