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Abstract

Source separation is a useful technology for improving the

benefit from hearing aids. However, most of the existing ap-

proaches to evaluating source separation rely on computational

methods, and do not consider the effect of the algorithm on the

end user. We seek to address this mismatch by quantifying the

benefit of two state-of-the-art deep neural network (DNN) based

source separation techniques, in terms of actual speech intel-

ligibility benefits evaluated via subjective listening tests with

15 hearing impaired (HI) listeners, as well as more established

computational metrics by which most source separation algo-

rithms are currently compared. We present here our proposed

source separation approach which is a novel application of the

’Convolutional Recurrent Neural Network’ (CRNN) deep learn-

ing architecture, and compare it with feedforward deep neural

network (FDNN) approach. We evaluate these approaches on

two talker mixtures from Danish hearing in noise test (HINT)

database. We are particularly interested in speech separation in

this work as the hearing-impaired listeners have problems un-

derstanding speech in the presence of one or more competing

voices.

Index Terms: source separation, deep neural networks, low la-

tency, hearing aids

1. Introduction

Source separation is an important technology for improving

hearing aid performance, and recently, large advances in this

domain have been achieved using a range of techniques using

‘deep neural networks (DNN)’ – whereby mapping of an in-

put to a target output is realised through learning complicated

non-linear relationships which are captured within the network

parameters. These approaches achieve state-of-the-art perfor-

mance even at very low latency, which is critical for hearing

aids [1]. It has been postulated (e.g., in [2] ) that delays larger

than 10 ms are objectionable to hearing impaired (HI) listeners.

The algorithmic delay of the DNN based approach used in our

work is 8 ms. This low-latency performance is therefore one of

the critical design features when considering source separation

for hearing aids.

Alongside low-latency performance, another primary goal

of a hearing-aid algorithm is to improve speech intelligibil-

ity, yet most of the current evaluation methods do not address

this need with respect to hearing-impaired listeners. Typically,

source separation algorithms, and the literature which reports

them, focuses primarily on the performance of the algorithms

in terms of separated source energy (e.g., source to distortion
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ratio (SDR) [3]), predicted perceptual quality (PEASS [4]), or

predicted intelligibility. The existing predicted intelligibility

metrics such as short term objective intelligibility (STOI [5])

and extended short term intelligibility (ESTOI [6]) are based on

models of normal hearing and tested on normal hearing listen-

ers, so they may not be accurate predictors of algorithm perfor-

mance for use in hearing aids.

Overall, current trends for developing and evaluating source

separation as a general technology do not adequately consider

the needs of its use specifically for hearing aids. We therefore

seek to address this in both development of low-latency source

separation and evaluation strategy and present our findings to

date here.

2. DNN for source separation

We use the time-frequency masking paradigm of source separa-

tion whereby a DNN is used to predict time-frequency mask

corresponding to the target speaker. The input features are

short-time Fourier transform (STFT) coefficients and output is

soft ratio mask defined as the ratio of magnitude spectrum of

the target speaker and sum of magnitude spectra of constituent

sources in the acoustic mixture (e.g., in [7, 8]). The predicted

time-frequency mask is multiplied with mixture spectrum to

yield the target speaker spectrum.

We investigate convolutional recurrent neural network

(CRNN) for source separation, originally proposed in [7]. The

motivation of using this architecture is to combine the feature

extraction property of convolutional layers from the input, i.e.,

time-frequency representation of the acoustic mixture in our

case, and the ability of recurrent layers (with long short term

memory (LSTM) units [9]) to model long term temporal depen-

dencies. We compare this architecture to a feedforward DNN

architecture similar to the one used in [10]. Table 1 shows the

hyperparameters used for the two architectures. Note that in

case of FDNN, frames spanning previous temporal context of

32 ms is fed to the input for estimation of the current frame, as

was done in [10]. For more details on hyperparameter selection

for the two architectures, please refer [7]. Output neurons for

both topologies use sigmoid activations while hidden units for

CRNN are rectified linear units and FDNN are sigmoid units.

Max pooling is used after each convolutional layer in CRNN

but only along frequency axis. Dropout regularization of 0.4 is

used. For training DNNs Keras library [11] is used.

3. Evaluation

The dataset used for training and evaluation of neural net-

works is an extended version of the Danish hearing in noise

test (HINT) dataset developed by [12]. The extended version

consists of three male and three female speakers, each of them
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Table 1: Hyperparameters used for the FDNN and CRNN. The pooling scheme represents max pooling operation along time and

frequency axes.

FDNN CRNN

hidden

layers

hidden

neurons

previous

context

conv.

layers

recurr.

layers

recurr.

neurons

conv.

filters

pooling

scheme

sequence

length

conv.

kernel size

4 1024 32 ms 3 1 256 256 1 by 2 512 ms 3× 3

recorded speaking 13 lists consisting of 5 word natural sen-

tences [13]. We use four lists for training and one list for vali-

dation. The remaining eight lists are used for testing. The test

mixtures are prepared by summing the signals corresponding to

the two talkers. The evaluation of the methods is based upon:

1) Computational metrics of separation, i.e., source to distor-

tion ratio (SDR), and extended short term objective intelligibil-

ity (ESTOI), the latter being better suited to our task as inter-

ferer in our case (i.e., for two talker mixtures) is non stationary;

and 2) Word recognition tests with hearing impaired listeners.

For subjective listening tests, a target-masker (TM) set up

is used where one of the constituent speaker serves as the target

signal. A cue is provided before the playback to indicate which

of the speaker sentence the listener must reproduce. The listen-

ing test scores are percentage of correct word scores reproduced

by the listener, transformed according to [14] to remove floor

and ceiling effects. The study involves 15 hearing-impaired lis-

teners with moderate to severe sloping hearing losses. In ad-

dition to the two DNN test conditions, we have two more test

conditions: one where unprocessed mixture is presented (re-

ferred as Sum) and the other where the ground truth source is

presented (referred as Separate). A comparison between these

four test conditions is made.

4. Results and conclusions

Table 2 reports SDR and ESTOI values corresponding to FDNN

and CRNN, for three speaker pairs: M1 F1, M1 M2, and F1 F2.

CRNNs here showed a slightly better average ESTOI scores

than FDNN. The subjective listening test, as depicted in Fig-

ure 1, showed a significant benefit of 35 % points with the DNN

methods in comparison to the Sum condition. The difference

between the two DNN modes was not found statistically signif-

icant albeit a slightly higher mean accuracy was observed for

CRNN as compared to FDNN. It is interesting to observe that

ESTOI metric showed similar pattern but the difference in per-

formance between the two DNN architecture is not large enough

to infer if the ESTOI metric is a good predictor of intelligibility

performance for HI listeners.

The obtained results in this study show that DNN based al-

gorithms have significant potential for improving speech intelli-

gibility for HI listeners in tasks where a speech signal of interest

is to be attended to in the presence of a masker speech signal.

A more exhaustive description of listening test results will be

reported in [15].

Table 2: Performance metrics for the two DNN architectures.

Speaker pair FDNN CRNN

SDR ESTOI SDR ESTOI

M1 F1 7.42 0.77 7.44 0.79

M1 M2 5.96 0.76 6.06 0.78

F1 F2 5.40 0.71 5.56 0.72
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Figure 1: Word recognition rates for the two DNN architectures

for TM task. The vertical bars denote 0.95 confidence intervals.
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