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Abstract

Besides noise reduction, an important objective of a binaural

speech enhancement algorithm is the preservation of the bin-

aural cues of both the desired speech source as well as the un-

desired noise in order to preserve the spatial impression of the

acoustic scene for the listener. Recently, it has been shown for

the binaural MVDR beamformer with partial noise estimation

(MVDR-N) that by combining head-mounted hearing devices

with an external microphone it is possible to improve the noise

reduction performance while achieving the same binaural cue

preservation. While the relative positions of the head-mounted

microphones can be assumed to be stationary this assumption

does not hold for the external microphone, which can change

its relative position due to head movements or direct movement

of the listener or the external microphone. In this paper, we

compare the influence of different methods for estimating the

relative transfer functions of the desired speech source between

the head-mounted microphones and the external microphone on

the noise reduction and binaural cue preservation performance

of the binaural MVDR-N beamformer.

Index Terms: binaural cues, noise reduction, external micro-

phone, interaural coherence, relative transfer functions

1. Introduction

Noise reduction algorithms for head-mounted hearing devices

(e.g., hearing aids) are crucial to improve speech quality and

intelligibility in background noise. Binaural devices, consist-

ing of one or more microphones on each side of the head of the

listener, are able to exploit not only spectral but also spatial in-

formation on both sides of head [1–3]. Besides noise reduction,

preserving the binaural cues of all present sound sources is an

important task of a binaural noise reduction algorithm in order

to ensure that the listener’s spatial impression is not distorted by

the algorithm.

For a single desired speech source, the binaural multi-

channel Wiener filter (MWF) [2, 4] has been shown to preserve

the binaural cues of the desired speech source. However, it

typically distorts the binaural cues of the noise, such that the

residual noise is perceived as coming from the same direction

as the desired speech source which is obviously undesired. As

an extension, the binaural MWF with partial noise estimation

(MWF-N) has been proposed [2,4,5], which aims at preserving

the speech component and a scaled version of the noise compo-

nent in the reference microphones of the left and the right hear-

ing device. It has been shown that the mixing parameter in the
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binaural MWF-N allows to trade off noise reduction and binau-

ral cue preservation performance of the noise component [4].

In this paper we consider the binaural minimum variance

distortionless response (MVDR) beamformer with partial noise

estimation (MVDR-N) [2, 4–6], which can be considered as a

special case of the binaural MWF-N only performing spatial

processing. Recently, the use of one or more external micro-

phones (eMics) in combination with head-mounted hearing de-

vices (HHDs) have been explored [7–13]. It has been shown

that using an eMic can increase both noise reduction and binau-

ral cue preservation performance, depending on the position of

the eMic [10, 12].

To implement the binaural MVDR beamformer, an estimate

of the relative transfer functions (RTFs) of the desired speech

source between all microphones and the reference microphones

on both HHDs are required. Instead of using reverberant RTFs,

one can also use anechoic RTFs. When an estimate of the

direction-of-arrival (DOA) of the desired speech source is avail-

able these anechoic RTFs can be easily constructed for the head-

mounted microphones, e.g., based on measurements or head

models. However, even when the DOA of the desired speech

source (relative to head) is known, this can not be used to com-

pute the (anechoic or reverberant) RTF between the reference

microphones and the eMic, since the position of the eMic is not

known. Hence, the (anechoic or reverberant) RTF needs to be

estimated from the microphone signals.

In this paper, we investigate the influence of three dif-

ferent RTF estimation methods [14–17] on the noise reduc-

tion and binaural cue preservation performance of the binaural

MVDR-N beamformer for a scenario with one desired speech

source surrounded by diffuse multi-talker noise in a reverberant

environment. As will be seen, the so-called covariance whiten-

ing [14, 15, 17] outperforms the others in terms of noise reduc-

tion and binaural cue preservation performance.

2. Configuration and notation

2.1. Signal model

Consider the multiple-input binaural-output (MIBO) system de-

picted in Fig. 1, consisting of a HHD with ML microphones on

the left side of the head, a HHD with MR microphones on the

right side of the head and an additional eMic, located some-

where else in the room at an unknown position. The m-th mi-

crophone signal in the left HHD YL,m(ω) can be written in the

frequency-domain as

YL,m(ω) = XL,m(ω) +NL,m(ω), m = 1, . . . ,ML, (1)

with XL,m(ω) the speech component and NL,m(ω) the noise

component. The m-th microphone signal in the right HHD

YR,m(ω) can be written similarly. The eMic signal Ye(ω) can
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be written as

Ye(ω) = Xe(ω) +Ne(ω), (2)

with Xe(ω) the speech component and Ne(ω) the noise com-

ponent in the eMic signal. For conciseness, we will omit the

frequency variable ω in the remainder of the paper whenever

possible. All microphone signals can be stacked in an M -

dimensional vector, with M = ML +MR + 1, as

y = [YL,1 . . . YL,ML
YR,1 . . . YR,MR

Ye]
T
, (3)

which can be written as

y = x+ n, (4)

where the vectors x and n are defined similarly as (3).

For a single desired speech source the speech vector x is

given by

x = aS, (5)

where the vector a contains the acoustic transfer functions

(ATFs) between the desired speech source and all microphones

and S is the (dry) speech signal. Please note that in the time-

domain the vector a corresponds to the room impulse responses

(RIRs) between the desired speech source and all microphones

and hence includes reverberation.

Without loss of generality, we define the first microphone

of both HHDs as the reference microphones. For ease of nota-

tion, the reference microphone signals YL,1 and YR,1 are further

denoted as YL and YR and can be written as

YL = e
T
Ly, YR = e

T
Ry, (6)

where eL and eR denote M -dimensional zero vectors with

eL(1) = 1 and eR(ML + 1) = 1. Similarly, the eMic sig-

nal can be written as Ye = eT
e y, with ee = [0 . . . 1]T . Using

(6), the reference microphone signals can be written as

YL = ALS
︸ ︷︷ ︸

XL

+NL, YR = ARS
︸ ︷︷ ︸

XR

+NR, (7)

where AL = eT
La and AR = eT

Ra denote the ATFs between

the reference microphones and the desired speech source. The

anechoic ATFs (not including reverberation) are denoted as ĀL

and ĀR. The RTF vectors for the left and the right HHD, relat-

ing the ATF vector a to the reference microphones [15, 16], are

defined as

hL =
a

AL

, hR =
a

AR

. (8)

The speech and noise correlation matrices are given by

Rx = E
{

xx
H
}

= Φsaa
H
, (9)

Rn = E
{

nn
H
}

, (10)

with E {·} the expectation operator, H the conjugate transpose

and Φs = E
{
|S|2

}
the power spectral density (PSD) of the

speech signal. The noise correlation matrix is assumed to be

full rank and hence invertible. By assuming statistical indepen-

dence between x and n, the correlation matrix of the micro-

phone signals can be written as

Ry = Rx +Rn. (11)

The (binaural) output signals of the left and the right HHD are

obtained by filtering all microphone signals, including the ex-

ternal microphone signal, with the complex-valued filter vectors

wL and wR, respectively, i.e.,

ZL = w
H
L y, ZR = w

H
Ry. (12)

wL wR

...
...

YL,ML

YL,2

YL,1

YR,MR

YR,2

YR,1

ZL ZR

Ye eMic

left HHD right HHD

Figure 1: MIBO system consisting of two head-mounted hearing

devices and an external microphone

The speech component in the output signals is given by Zx,L

and Zx,R.

2.2. Binaural cues

In addition to monaural cues, binaural cues are used by the lis-

tener to localize sound sources and to get a sense of the sur-

rounding sound field [18, 19]. For coherent (directional) sound

sources the most descriptive binaural cues are the interaural

level difference (ILD) and the interaural time difference (ITD).

The interaural coherence (IC) is important for source localiza-

tion in multi-source and reverberant environments since it de-

termines the reliability of the ILD and ITD cues [19, 20].

The input interaural transfer function (ITF) of the speech

component is defined as

ITFin
x =

E {XLX
∗

R}

E {|XR|2}
=

eT
LRxeR

eT
RRxeR

. (13)

The output ITF of the speech component is similarly defined as

ITFout
x =

E
{
Zx,LZ

∗

x,R

}

E {|Zx,R|2}
=

wH
L RxwR

wH
RRxwR

. (14)

The input ILD of the speech component is defined as the power

ratio of the speech component in the left and the right HHD [4],

i.e.,

ILDin
x =

E
{
|XL|

2
}

E {|XR|2}
=

eT
LRxeL

eT
RRxeR

. (15)

The output ILD of the speech component is similarly defined as

ILDout
x =

E
{
|Zx,L|

2
}

E {|Zx,R|2}
=

wH
L RxwL

wH
RRxwR

. (16)

The ITD can be calculated from the ITF as [4]

ITD =
∠ITF

ω
, (17)

with ∠ denoting the phase. The input noise IC is defined as

ICin
n =

eT
LRneR

√

(eT
LRneL)(eT

RRneR)
. (18)

The output noise IC is similarly defined as

ICout
n =

wH
L RnwR

√

(wH
L RnwL)(wH

RRnwR)
. (19)

The (real-valued) magnitude-squared coherence (MSC) is de-

fined as MSC = |IC|2.
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3. Binaural noise reduction

In this section we introduce a binaural noise reduction approach

that uses all microphones to spatially filter the microphone in-

puts. The binaural MVDR-N beamformer [2, 4–6] minimizes

the output noise PSD while preserving the speech component in

the reference microphone signals (and hence the binaural cues

of the speech component) and a scaled version of the noise com-

ponent in the reference microphone signals. The constraint op-

timization problem for the left filter can be formulated as

min
wL

E
{

|wH
L n− ηNL|

2
}

s.t. w
H
L a = AL. (20)

The solution for the left filter is given by [6, 21]

wη,L = (1− η)

w0,L

︷ ︸︸ ︷

R−1
n a

aHR−1
n a

A
∗

L +ηeL, (21)

= (1− η)
R−1

n hL

hH
LR−1

n hL

+ ηeL, (22)

with 0 ≤ η ≤ 1 a real-valued mixing parameter. The solu-

tion for the right filter is similar to (22) by substituting R for

L. Using (22) in (12), the output of the binaural MVDR-N

beamformer can be interpreted as a mixture between the bin-

aural MVDR beamformer output (scaled with 1 − η) and the

(noisy) reference microphone signal (scaled with η).

For η = 0 the binaural MVDR-N beamformer is equal to

the binaural MVDR beamformer w0,L [2,3,22] and hence pre-

serves the ILD and ITD cues of the desired speech source [4].

However, it has been shown in [6] that for the binaural MVDR

beamformer the output noise MSC is equal to 1 and hence the

surrounding noise field is perceived as coming from the same

direction as the desired speech source. For η = 1 the binau-

ral MVDR-N beamformer output is equal to the reference mi-

crophone signals in (6) and hence preserves the binaural cues

of both the desired speech source and the noise component,

although no noise reduction is achieved. Hence, the binaural

MVDR-N beamformer trades off noise reduction against binau-

ral cue preservation of the noise component using the mixing

parameter η.

Since accurately estimating the ATF vector a is known to

be difficult [23], several methods for estimating the RTF vectors

hL and hR have been proposed [14–17] and hence the usage of

(22) is preferred. If all microphone positions are known and

a reliable DOA estimation is available, one can also use mea-

sured [24] or simulated [25] anechoic RTF vectors. While this

is a reasonable (and robust) approach when only using the head-

mounted microphones, the exact position of the eMic is usually

not known. Hence, at least for the eMic, other methods, e.g., es-

timated RTFs between the reference microphones and the eMic

need to be considered.

Due to robustness, we use anechoic RTFs for the head-

mounted microphones (assuming the DOA θ to be known) and

estimated RTFs only for the eMic, i.e.,

h̃L =

[
h̄L(θ)
He,L

]

, h̃R =

[
h̄R(θ)
He,R

]

(23)

where h̄L(θ) and h̄R(θ) denote the ML- and MR-dimensional

anechoic (measured or simulated) RTF vectors which depend

on the DOA θ for the left and the right HHD, respectively, and

He,L and He,R denote the estimated (anechoic or reverberant)

RTFs between the HHD reference microphones and the eMic.

The construction of the RTF vectors is schematically depicted

y

DOA θ

RTF

h̄L(θ), h̄R(θ)

He,L, He,R

h̃L, h̃R

Figure 2: Proposed construction of the RTF vectors

in Fig. 2.

By using anechoic RTFs for both the head-mounted micro-

phones and the eMic the RTF vectors are connected by a simple

factor, i.e., h̃L = h̃R
ĀL

ĀR
and hence are parallel. This leads to

the aforementioned mapping of the noise component to the po-

sition of the desired speech source and hence the output noise

MSC being equal to 1. By mixing anechoic and reverberant

RTFs, i.e., estimating reverberant RTFs for the eMic, the RTF

vectors are not parallel, which leads to partial cue preservation

of the noise component even when the mixing parameter η is

set to 0 as will be seen in the experimental results in Section 5.

4. RTF estimation methods

In this section we describe three different methods to estimate

the RTFs He,L and He,R between the head-mounted reference

microphones and the eMic which are then used in (23). Al-

though only the estimators for He,L are discussed, the estima-

tors for He,R can again simply be obtained by substituting R for

L. Using the speech correlation matrix in (9), the RTF between

the left reference microphone and the eMic is given by

He,L =
eT
e RxeL

eT
LRxeL

=
Ae

AL

. (24)

4.1. Biased approach

Assuming a reasonable large SNR, the speech correlation ma-

trix in (24) can simply be replaced by the (noisy) correlation

matrix of the microphone signals Ry in (11), leading to the bi-

ased estimator

H
b
e,L =

eT
e RyeL

eT
LRyeL

=
E {YeY

∗

L}

E {|YL|2}
(25)

Generally, by using the biased estimator in (25) to estimate

Hb
e,L and Hb

e,R, the RTF vectors in (23) are not parallel.

4.2. MVDR pre-processed RTF estimation

An alternative approach to estimate the RTFs was proposed

in [13], where it was proposed to pre-process the head-mounted

microphones using an MVDR beamformer. The binaural

MVDR beamformer only using the HHDs can be written in

terms of the anechoic RTFs vectors h̄L(θ) and h̄R(θ) as

wH,L =

[
R

−1

n,H
h̄L(θ)

h̄H
L

(θ)R−1

n,H
h̄L(θ)

0

]T

, (26)

where Rn,H is the (M − 1)× (M − 1)-dimensional noise cor-

relation matrix only using the head-mounted microphones. The

MVDR pre-processed (biased) RTF estimate is then given by

H
pp
e,L =

E
{
Yey

HwH,L

}

E
{
wH

H,Lyy
HwH,L

} =
eT
e RywH,L

wH
H,LRywH,L

(27)

By substituting wH,R in (27) it can easily be shown that H
pp
e,L =

H
pp
e,R

ĀR

ĀL
and hence, by using the pre-processed estimator in
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Figure 3: Input noise MSC generated by four loudspeakers

(27) the RTF vectors in (23) are parallel, what leads to the map-

ping of the residual noise to the position of the desired speech

source.

4.3. Covariance whitening

Covariance whitening is a well-known approach to estimate

RTFs [14, 15, 17]. The noise correlation matrix can be factor-

ized into a lower triangular matrix L and its conjugate transpose

LH using the Cholesky decomposition, i.e., [15, 17]

Rn = LL
H
, R

−1
n = L

−H
L

−1
. (28)

Using (28), the pre-whitened correlation matrix of the micro-

phone signals is given by

R
w
y = L

−1
RyL

−H
. (29)

The eigenvalue decomposition (EVD) of this pre-whitened ma-

trix is given by

R
w
y = VΛV

H
, (30)

with V an M×M -dimensional matrix containing the eigenvec-

tors and Λ an M ×M -dimensional diagonal matrix containing

the eigenvalues. Using the eigenvector vmax that corresponds

to the largest eigenvalue, the RTF can be estimated as [15, 17]

H
cw
e,L =

eT
e Lvmax

eT
LLvmax

(31)

Compared to the MVDR pre-processed approach in Section 4.2,

the covariance whitening approach aims at estimating the rever-

berant RTFs and hence, the RTF vectors in (23) are not parallel.

5. Experimental results

5.1. Setup

All signals were recorded in a laboratory with variable acous-

tics (7 m × 6 m × 2.7 m) where the reverberation time was

set to about 350 ms. We used two behind-the-ear (BTE) hear-

ing aid dummies each having two microphones with an inter-

microphone distance of about 7.6 mm, and an external micro-

phone, i.e., M = 5 microphones in total. The hearing aids

were placed on the ears of a head-and-torso simulator (HATS)

that was placed in the middle of the room. The desired speech

source was played back by a loudspeaker placed at about 2 m
distance to the middle of the head at an angle of about 35◦,

i.e., on the right side of the HATS. The background multi-talker

noise was realized by four loudspeakers in the corners of the

room that were facing the corners and playing back uncorre-

lated multi-talker noise. Fig. 3 shows the measured input noise

MSC using the first microphone of each hearing aid as refer-

ence microphone. The speech and noise signals were recorded

separately such that we were able to mix them at different in-

put SNRs afterwards. The external microphone was placed at

0.5 m distance to the desired speech source parallel to the view-

iSNRin
R [dB] -10 -5 0 5

iSNRin
L [dB] -14.5 -9.5 -4.5 0.5

iSNRin
e [dB] -2.5 2.5 7.5 12.5

Table 1: Input intelligibility-weighted SNRs

ing direction of the HATS.

For the anechoic RTF vectors h̄L(θ) and h̄R(θ) used in

(23) we used the database presented in [24] who used simi-

lar hearing aid dummies in an anechoic room. We assumed

a DOA of 35◦ and chose the respective measurements from

the database. The processing was done at a sampling rate of

16 kHz using an STFT-based weighted overlap-add framework

with a frame length of 16 ms (256 samples) and a frame shift

of 50%. The input signals consisted of 2 s noise-only followed

by 18 s of speech-plus-noise. The noise correlation matrix R̂n

was estimated during the noise-only part, whereas the micro-

phone signal correlation matrix R̂y was estimated during the

speech-plus-noise part. The RTFs between the reference micro-

phones and the external microphone were estimated using R̂n

and R̂y , cf. Section 4. The obtained filters in (22) were applied

to the complete signal

We evaluated four different filters, namely

• the binaural MVDR beamformer in (26) only using the

head-mounted microphones (wH)

• the binaural MVDR-N beamformer in (22) using either

the biased RTF estimate in (25) (wb
η), the pre-processed

RTF estimate in (27) (wpp
η ) or the covariance whitening

RTF estimate in (31) (wcw
η )

As objective performance measures we used the

intelligibility-weighted SNR (iSNR) [26] improvement

for the left and the right hearing aid relative to the reference

microphone signals, the MSC error comparing the input noise

MSC (cf. Fig. 3) with the output noise MSC, and the ILD and

ITD errors comparing the input speech ILD and ITD with the

output speech ILD and ITD. All measures have been averaged

over all frequencies. We set up two experiments where we

changed either the input iSNR or the mixing paramter η.

5.2. Experiment 1

In the first experiment we varied the input iSNR in the right

reference microphone (iSNRin
R ) from −10 dB to 5 dB in steps

of 5 dB. This led to the input iSNRs for the left reference

microphone (iSNRin
L ) and the eMic (iSNRin

e ) as shown in Table

1. The mixing parameter was set to η = 0 such that the filter in

(22) is equal to the binaural MVDR beamformer w0,L.

The results are depicted in Fig. 4. As can be observed,

the performance of the filter wH does not depend on the input

iSNR, whereas for the filters that exploit an RTF estimate be-

tween the reference microphones and the eMic the input iSNR
influences the performance. The binaural MVDR beamformer

using the covariance whitening RTF estimate wcw
η clearly out-

performs all other filters in all objective measures.

It can be observed especially for the right iSNR improve-

ment that the covariance whitening RTF estimate is less affected

by a low input iSNR. For all values of the right input iSNR the

covariance whitening RTF estimate leads to the highest output

iSNR for both the left and the right side. Further, the filter using

the pre-processed RTF estimate wpp
η always leads to a higher

output iSNR than the filter using the biased RTF estimate wb
η .

The filter wH always leads to the lowest output iSNR.

For the MSC error of the noise component the filters using

Proc. of the 1st Int. Conference on Challenges in Hearing Assistive Technology (CHAT-17), Stockholm, Sweden, August 19, 2017

104



iSNR improvement left

-10 -5 0  5  
8

10

12

14

d
B

 w
H  w

b
 w

pp
 w

cw

iSNR improvement right

-10 -5 0  5  

6

8

10

d
B

MSC error of noise component

-10 -5 0  5  
0.6

0.8

1

M
S

C

ILD error of speech component

-10 -5 0  5  
2.5

3

3.5

d
B

ITD error of speech component

-10 -5 0  5  

right input iSNR [dB]

30

40

50

s

Figure 4: Results of the first experiment where the input iSNR
in the right reference microphone has been changed and the

mixing paramter has been set to η = 0

parallel RTF vectors (wH and wpp
η ) lead to a constant value,

whereas the filters using non-parallel RTF vectors (wb
η and

wcw
η ) lead to smaller errors. The MSC error of the noise com-

ponent decreases with increasing right input iSNR for the filter

using the biased estimate wb
η and increases for the filter using

the covariance whitening estimate wcw
η . While wcw

η outper-

forms wb
η for low right input iSNRs, the biased approach leads

to the smallest MSC error for the highest right input iSNR and

hence outperforms all other filters in this condition.

The ILD error of the speech component does not vary much

with changes of the right input iSNR, but wcw
η outperforms all

other filters in all conditions.

The ITD error of the speech component is constant over

all conditions for the filters using the parallel RTF vectors (wH

and wpp
η ) and decreasing with increasing right input iSNR for

the filters using non-parallel RTF vectors (wb
η and wcw

η ), while

wcw
η outperforms wb

η .

In conclusion, it appears that even when using anechoic

RTFs for the head-mounted microphones, using reverberant

RTF estimates between the reference microphones and the ex-

ternal microphone (as in wb
η and wcw

η ) may lead to slight binau-

ral cue preservation of the noise without even applying partial

noise estimation.

5.3. Experiment 2

In the second experiment we set the input iSNR in the right

reference microphone to −5 dB (cf. Table 1) and varied the

mixing parameter η in (22) from 0 to 0.2 in steps of 0.05. The

results for the second experiment are depicted in Fig. 5. The

binaural MVDR beamformer using only the head-mounted mi-

crophones wH is obviously not affected by the mixing param-

eter η but yields a reference of the filter performance without

incorporating an eMic.

In terms of iSNR improvement the performance of the

binaural MVDR-N beamformer using an external microphone

is better than the binaural MVDR beamformer only using the

head-mounted microphones for small values of η. This effect

decreases with increasing η, i.e., the output iSNR of the binau-

ral MVDR-N beamformer is decreasing with η. For low values

of η the filter using the covariance whitening RTF estimate wcw
η

clearly outperforms all other filters, while for larger η the dis-

tance to the other filters decreases. Hence, it appears that η
has higher influence on wcw

η than on wb
η and wpp

η . The pre-

processing done in wpp
η proves beneficial for all values of η

compared to the filter using the biased estimate wb
η .

The MSC error of the noise component is decreasing with

η for the binaural MVDR-N beamformer, which is intuitively

clear because more and more of the noisy reference microphone

signal is added to the beamformer output. The filter wcw
η clearly

outperforms all other filters, while wb
η only slightly outperforms

wpp
η for very small values of η.

The ILD and ITD errors of the speech component are de-

creasing with increasing η for the binaural MVDR-N beam-

former. Please note, that in theory the ILD and ITD errors of the

speech component are equal to 0 but due to the use of anechoic

RTFs these errors occur. The filter wcw
η again outperforms all

other filters, while wpp
η outperforms wb

η in terms of ILD error,

and wb
η outperforms wpp

η in terms of ITD error.

6. Conclusions

In this paper we investigated the influence of three different RTF

estimators that estimate the RTFs between the reference micro-

phones of two head-mounted hearing devices and an external

microphone on the noise reduction and binaural cue preser-

vation performance of the binaural MVDR-N beamformer us-

ing recorded signals. The estimator using so-called covariance

whitening outperformed the other estimators. Additionaly, it

appeared that using anechoic RTFs for the head-mounted mi-

crophones and reverberant RTFs for the external microphone

leads to slight binaural cue preservation without even applying

partial noise estimation.
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