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Abstract
Statistic parametric speech synthesis (SPSS) systems [1] are be-

ing widely researched in the field of speech processing. We

present in this paper a speech synthesis method for people with

hearing loss. Because of their disorders, their prosody is of-

ten unstable and their speech rate, pitch, and spectrum differ

from those of physically unimpaired persons, which causes their

speech to be less intelligible and, consequently, makes commu-

nication with physically unimpaired persons difficult. In order

to deal with these problems, this paper describes an approach

that makes use of a novel combination of deep neural net-

works (DNN)-based text-to-speech synthesis using the DNNs

of a physically unimpaired person and a person with hearing

loss, while preserving the individuality of a person with hear-

ing loss. Through experimental evaluations, we have confirmed

that the proposed method successfully synthesizes an intelligi-

ble speech signal from a hard-to-understand signal while pre-

serving the target speaker’s individuality.

Index Terms: hearing disorders, speech synthesis system, deep

neural networks, assistive technologies

1. Introduction

In this paper, we focus on, as one assistive technology for a

person with hearing loss, a speech synthesis system that assists

persons in their speech communication. Their speech style may

be different from those of persons without hearing loss and the

utterances may be less intelligible due to hearing loss. It some-

times makes verbal communication with other people difficult.

A DNN-based speech synthesis system [2], [3], [4] is a text-

to-speech (TTS) system that can generate signals from input

text data. A TTS system may be useful for persons with hearing

loss because the synthesized speech signal may become more

intelligible by adjusting the utterance duration, pitch, and spec-

trum.

In this paper, we propose a DNN-based speech synthesis

method for a person with hearing loss. To generate an intelligi-

ble synthesized speech signal while preserving the speaker’s in-

dividuality, we use speech data from both a person with hearing

loss and a physically unimpaired person. Because the speech

rate of a person with hearing loss may be unstable, the duration

model of a person with hearing loss is modified using the DNNs

of a physically unimpaired person to stabilize the speech rate.

In addition, the F0 patterns of a person with hearing loss are

often unstable. To solve this problem, in the synthesis step, the

F0 features predicted from the networks of a physically unim-

paired person are used as the input of the networks of a person

with hearing loss after being converted to the average F0 of the

hearing loss person using a linear transformation.

As for the spectral problem associated with a person with

hearing loss, the consonant parts of utterances are sometimes

unclear or unstable. To resolve the consonant problem, we gen-

erate the spectrum for some consonants from the acoustic model

of a physically unimpaired person and the vowel spectrum from

the acoustic model of a person with hearing loss in order to pre-

serve the speaker’s individuality.

The rest of this paper is organized as follows; In Section

2, an introduction to related work about assistive technology is

presented. In Section 3, a speech synthesis system using deep

neural networks is presented. Section 4 presents the proposed

speech synthesis system for a person with a hearing disorder. In

Section 5, in order to confirm the effectiveness of our method,

the experimental data are evaluated. Finally, the conclusions are

drawn in Section 6.

2. Related Works

To assist people with articulation disorders, a number of as-

sistive technologies using information processing have been

proposed. As one of the techniques used for statistic para-

metric speech synthesis, the Hidden Markov model (HMM)-

based TTS approach [5], has been studied for a long time and

a number of assistive technologies using a HMM-based TTS

system have been proposed; for example, Veaux used HMM-

based speech synthesis to reconstruct the voice of individuals

with degenerative speech disorders resulting form Amyotrophic

Lateral Sclerosis (ALS) [6]. They have proposed a reconstruc-

tion method for degenerative speech disorders using an HMM

sound synthesis system. In this method, the subject’s utterances

were used to adapt an average voice model pre-trained on many

speakers. Creer also adapted the average voice model of multi-

ple speakers to severe dysarthria data [7], and Khan used such

an adaptation method on a laryngectomy patient’s data [8]. The

authors of this paper also proposed a HMM-based TTS system

for people with articulation disorders [9].

Recently, deep learning has had success in speech synthesis

in regard to naturalness and sound quality compared with hid-

den Markov models [1]. Deep neural networks contain many

layers of nonlinear hidden units and represent a mapping func-

tion from linguistic features to acoustic features. In the field of

speech processing technology, speech recognition (lip reading

using deep learning) has also had success [10].

Recently, to develop sound quality and naturalness, the ar-

chitectures of the DNN have been improved; for example, using

long-short-term-memory to take the continuity of speech into

account [11], and using i-vectors to adapt the average voice

model of multiple speakers [12]. In the adaptation task, a small

amount of speech data is required to create synthesized speech

because it is difficult for a person with an articulation disorder

to say many sentences.

In this paper, we employ trajectory training [3] to train

DNN. Trajectory training is regarded as a successful method
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and has been widely used in recent years for various tasks.

3. DNN-based Speech Synthesis

Fig. 1 shows the overview of the basic approach to text-to-

speech (TTS) synthesis based on deep neural networks. The

figure shows the synthesis parts of a DNN-based TTS system.

In the training part of networks, inputs, the linguistic features

extracted from an input text-by-text analysis, are mapped to the

output acoustic features (spectral, F0, and aperiodicity) using

back propagation. In the synthesis part, the linguistic features

are mapped to the output acoustic features using forward prop-

agation. In the parameter generation part, the output acous-

tic parameters including static, delta, and acceleration param-

eters are generated into smooth parameter trajectories using the

speech parameter generation algorithm [13]. In the waveform

synthesis part, a vocoder, such as STRAIGHT [14] or WORLD

[15], is used to synthesize speech signals from the smooth pa-

rameter trajectories. State duration densities are modeled by

the method used in HMM-based speech synthesis systems [16]

to control rhythm and tempo, where state durations of each

phoneme HMM are modeled by a multi-dimensional Gaussian

distribution.

DNN-based speech synthesis comprises the training part

and the synthesis part. Acoustic features consist of D-

dimensional static features ct = [ct(1), ct(2), ..., ct(D)] and

corresponding dynamic features ∆ct and ∆2
ct , written as

ot = [cTt ,∆c
T
t ,∆

2
c
T
t ]

T
(1)

Dynamic features are computed from the sequence of static fea-

tures. The sequence of acoustic features o = [oT
1 ,o

T
2 , ...,o

T
T ]

can be caluculated from the sequence of static features c =
[cT1 , c

T
2 , ..., c

T
T ] by

o = Wc (2)

where T is the number of frames included in the sequence and

W is a matrix used to extend static features c to acoustic fea-

tures o [13].

In the training part, the input text is analyzed and trans-

formed into labels, which contain linguistic contexts. The net-

works learn the complex mapping function from linguistic fea-

tures xt to acoustic features ot, where the frame-level mean

square errors between the predicted acoustic features ôt and the

observed acoustic features ot are minimized using the back-

propagation algorithm.

In the synthesis part, output features include static, delta,

and acceleration features. To generate the smooth parame-

ter trajectories, the maximum likelihood parameter generation

Figure 1: A flow of speech synthesis using deep neural networks.

(MLPG) algorithm [17] is used to take the dynamic features as

constraints. The smooth parameter trajectory ĉ is given by

ĉ = arg max
c

P (o|λ) = arg max
c

N (Wc|µ,Σ) = c̄ (3)

where λ is the model parameter and N (|µ,Σ) denotes the

Gaussian distribution with mean vectors µ and covariance ma-

trix Σ. The smooth parameter trajectories calculated by the

MLPG algorithm can be written by (4).

ĉ = (WT
Σ

−1
W)−1

W
T
Σ

−1
µ (4)

In the synthesis part, µ is the frame obtained by performing a

forward propagation and Σ is computed from the training data.

We can reconstruct the speech waveform from the smooth pa-

rameter trajectory ĉ by using a vocoder.

3.1. Trajectory training

To take the interaction between the static and dynamic features

into account, the trajectory training minimizes the utterance-

level trajectory error than the frame-level error [3]. This train-

ing criterion is called the minimum generation error (MGE).

The Euclidean distance between the predicted trajectory ĉ (cal-

culated by MLPG) and the observed static trajectory is called

the trajectory error. The objective function is written as

L = (ĉ− c)T(ĉ− c) = (Rô− c)T(Rô− c) (5)

where

R̂ = (WT
Σ

−1
W)−1

W
T
Σ

−1
(6)

Mean-variance normalization is performed to ĉ and c before

calculated the trajectory error. The mean and variance values

are calculated from the training data in advance. The parameters

of DNN are trained by back-propagation using gradient, as is

the case with conventional frame-level training.

4. DNN-based Speech Synthesis for a
Person with Hearing Loss

In our method, the voice of two people, a person with hearing

loss and a physically unimpaired person, are used to generate

a more intelligible synthesized speech signal that preserves the

individuality of the person with hearing loss. Fig. 2 shows the

original spectrograms for the word “/r/ /i/ /cl/ /sh/ /u/ /N/”“/r/ /i/

/cl/ /sh/ /u/ /N/” of a physically unimpaired person and a person

with hearing loss.

As shown in Fig. 2, the high-frequency spectral power of a

person with hearing loss is weaker compared to that of a phys-

ically unimpaired person. In addition, the duration of a per-

son with hearing loss is unstable that some phones (ex: “/cl”

and “/sh/”) are too long compared to other phones although the

speech length is almost the same as that of a physically unim-

paired person. This may be one of the reasons behind the unin-

telligibility. Therefore, in our method, a more intelligible syn-

thesized speech signal that preserves the speaker’s individuality

is generated by using the features of both a person with hearing

loss and a physically unimpaired person.

4.1. F0 model modification

Fig. 3 shows the overview of the approach to F0 modification.

As the F0 patterns of a person with hearing loss are often un-

stable, we modify it using the F0 features of a physically unim-

paired person.
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(a) a physically unimpaired person.

(b) a person with hearing loss.

Figure 2: Sample spectrograms of /r i cl sh u N/.

In the training part, first, DNNs of a physically unimpaired

person and a person with hearing loss are trained independent

of each other. For the DNNs of a physically unimpaired person,

the input is the linguistic features and the output is the spec-

tral, aperiodicity, and F0 features of a physically unimpaired

person. For the DNNs of a person with hearing loss, the input

is the linguistic features and the F0 features (static, delta, and

acceleration) and the output is spectral features and aperiodicity

features of a person with hearing loss.

As shown in Fig. 3, in the synthesis part, first, linguistic

features are mapped to the spectral, aperiodicity, and F0 fea-

tures using the DNNs of a physically unimpaired person. The

output F0 features of a physically unimpaired person are con-

verted to those of a person with hearing loss by using the linear

transformation in Eq. (7) and then, they are used as the input

for networks of a person with hearing loss.

ŵt =
σx

σw

(wt − µ
(F0)
w ) + µ

(F0)
x (7)

where wt represents a log-scaled F0 of a physically unimpaired

person at the frame t, µ
(F0)
w and σt represent the mean and stan-

dard deviation of wt, respectively. µ
(F0)
x and σx represent the

mean and standard deviation of log-scaled F0 of a person with

hearing loss, respectively.

4.2. Duration model modification

The speech rhythm and tempo of a person with hearing loss dif-

fer from those of physically unimpaired persons, and this causes

their speech to be less intelligible. To solve this problem, the

Figure 3: A flow of the F0 modification method.

speech rhythm and tempo of a physically unimpaired person

are used in the synthesis part. However, as the average speech

rate contains rich speaker individuality, the average speech rate

of the synthesized speech signal is fit to that of a person with

hearing loss. To implement these ideas, the duration model is

modified as follows:

yi = ti − µ
(Dur)
w + µ

(Dur)
x (8)

µ
(Dur)
w =

∑
I

i=1 µti

I
(9)

µ
(Dur)
x =

∑
I

i=1 µxi

I
(10)

In Eq. (8), ti represents the value of the i-th node in the

duration model of a physically unimpaired person. In Eqs. (9)

and (10), I represents the total number of nodes in the model,

uti represents the mean the value of the i-th node in the model

of a physically unimpaired person, and uxi represents the mean

the value of the i-th node in the model of a person with hearing

loss.

5. Experiments

5.1. Experimental conditions

We prepared the training data for two men. One is a physi-

cally unimpaired person, and the other is a person with hearing

loss. We used 503 sentences from the ATR Japanese database

B-set for a physically unimpaired person and we recorded 503

sentences uttered by a person with hearing loss. 450 and 53 ut-

terances were used for training and development, respectively.

In addition, we recorded 10 sentences uttered by a person with

hearing loss for testing. The speech signal was sampled at

16kHz and the frame shift was 5 msec. Acoustic and prosodic

features were extracted using WORLD [15]. As spectral pa-

rameters, the 0-th through the 49-th mel-cepstrum coefficients

[18], and their dynamic and acceleration coefficients were used.

As excitation parameters, log-F0 and 25 band-filtered aperiod-

icity [19] were used, along with their dynamic and acceleration

coefficients.

In order to confirm the effectiveness of our method, four

systems were compared.
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(a) Conventional vs Original. (b) Proposed vs Original.

(c) Proposed vs Prop Dur. (d) Proposed vs Prop F0

Figure 4: Preference scores for the listening intelligibility based on subjective evaluations.

• Conventional: DNN-based speech synthesis system us-

ing trajectory training

• Prop Dur: Conventional + “Duration model of a per-

son with hearing loss was modified in Eq. (8)”

• Prop F0: Conventional + “F0 modification based on

section 4.1”

• Proposed: Prop Dur + Prop F0

In Conventional, input features consisted of 395 features,

which comprised 386 binary and 9 numeric features. Binary

features were derived from categorical linguistic contexts in-

cluding quinphone identities, accent type, position of phone,

mora, word, and so on. Numeric features include frame position

information. Output features consisted of 50 mel-cepstrum co-

efficients, log-F0, and 25 band-filtered aperiodicity, their deltas

and accelerations coefficients, and a voiced/unvoiced value (3 +

(50 + 25 + 1) + 1 = 229). Input features were normalized to the

range 0.0-1.0 based on min-max and output features were nor-

malized to zero mean and unit variance. To reduce the training

cost, silence frames were removed from the training data of a

person with hearing loss. The architecture of the networks was

4-hidden-layers, with each hidden layer containing 700 units.

The sigmoid activation function was used for hidden layers,

and the linear activation function was used for the output layer.

In order to complement some consonant parts of a person with

hearing loss, the consonants /s, sh, k, t, ts, z, ch/ were replaced

by those of a physically unimpaired person.

In order to evaluate the models, we evaluated the listening

intelligibility and the speaker similarity by listening to voices

recorded and synthesized under the five conditions (original

speech, Conventional, Prop Dur, Prop F0, Proposed). A

total of 9 Japanese speakers took part in the listening test us-

ing headphones. For speaker similarity, a DMOS (Degradation

Mean Opinion Score) test was performed. In the DMOS test

[20], the original speech signal was used as the reference signal

and the option score was set to a 5-point scale (5: degrada-

tion is inaudible, 4: degradation is audible but not annoying, 3:

degradation is slightly annoying, 2: degradation is annoying, 1:

degradation is very annoying). For the listening intelligibility, a

paired comparison test was carried out, where each subject lis-

tened to pairs of speech signals converted by two methods, and

then selected which sample was more intelligible.

5.2. Experimental results

Fig. 4 shows the preference score on the listening intelligibility,

where the error bar shows a 95% confidence score. As shown

in Fig. 4, our proposed method obtained a higher score than the

original recorded speech signal, Prop F0 and Prop Dur. The

synthesized speech of Conventional is less intelligible than the

original recorded speech, but the synthesized speech of Pro-

posed is more intelligible than the original speech signal and

Conventional. Also, as shown in Fig. 4 (c) and (d), the modifi-

cation of both the F0 and duration model will result in synthe-

sizing more intelligible speech signals.

Fig. 5 shows the results of the DMOS testing on speaker

similarity, where the error bars show a 95% confidence score.

As shown in Fig. 5, the synthesized voice from Conventional is
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Figure 5: Speaker similarity to the hearing loss person based

on subjective evaluations.

the most similar to the original voice of the person with hearing

loss. Also, it was confirmed that the speaker individuality of a

person with hearing loss was lost when using features of a phys-

ically unimpaired person. The DMOS score of the proposed

method was 3.19 (4: degradation is audible but not annoying,

3: degradation is slightly annoying) and this means speaker in-

dividuality is slightly annoying but preserved.

Therefore, from Figs. 4 and 5, it is confirmed that our pro-

posed method generates synthesized signals that are intelligible

and include the individuality of a person with hearing loss.

6. Conclusions

In this paper we have proposed a text-to-speech synthesis

method using deep neural networks for a person with hearing

loss. In our method, to generate more intelligible synthesized

sounds while preserving the individuality of a person with hear-

ing loss, a novel combination approach of deep neural networks

was employed. The F0 features of a person with hearing loss

were modified using those of a physically unimpaired person.

The duration model of a physically unimpaired person was used

to modify the model of a person with hearing loss. In order

to complement some consonant parts of a person with hearing

loss, the consonant parts were replaced by those of a physically

unimpaired person. The experimental results showed that our

method was highly effective in improving the listening intelligi-

bility of speech spoken by a person with hearing loss. In future

research, we will complement the vowel parts of the spectral

parameters in the training part.
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