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Abstract

Automatic and accurate prediction of human speech perception

performance is of great benefit for developing speech process-

ing algorithms. Automatic speech recognizers (ASR) can be

designed with the goal of mimicking human performance in

speech recognition, hence, they can also be employed for pre-

dicting the intelligibility of speech. This paper presents two

new objective measures for predicting speech intelligibility at

the word level. The normalized likelihood difference (NLD)

and the time alignment difference (TAD) are the proposed mea-

sures, extracted utilizing the hidden Markov models (HMMs)

trained for an ASR system. Experimental results show that the

proposed measures can accurately predict the normal-hearing

listeners’ performance in a keyword recognition task.

Index Terms: speech intelligibility prediction, automatic

speech recognition, microscopic approach, objective measure

1. Introduction

The number of applications of devices working with speech

signals is growing every day. For instance, many researchers

are developing speech processing algorithms for hearing aids,

which are widely needed in our aging societies. For these devel-

opments, it has always been a requirement to assess the intelligi-

bility or quality of the signal at hand before or after processing.

Partially automating this task rather than purely relying on lis-

tening tests is beneficial considering the time and cost required

in human intelligibility assessment.

In the last decades, many objective measures have been

published, which aim to predict the speech intelligibility from

a macroscopic point of view. Well-known objective measures

like the speech intelligibility index (SII) [1], speech transmis-

sion index (STI) [2], short time objective intelligibility (STOI)

[3], and mutual-information-based models [4] compare the de-

graded speech with a reference in long segments, e.g. over an

entire sentence, and predict only the average number of speech

units, like words, heard correctly. The speech-based enve-

lope power spectrum model (sEPSM) [5] is another example

of macroscopic measures, which uses an auditory model to ana-

lyze the speech signal and computes the signal-to-noise ratios in

modulation frequency bands as a measure of intelligibility. This

model was later extended to mr-sEPSM [6] and sEPSM-corr [7]

in order to account for non-linear degradations as well.

Macroscopic measures typically require longer input sig-

nals in order to obtain a sufficient accuracy in intelligibility pre-

diction. In contrast to such methods, microscopic approaches

process smaller segments of speech and attempt to predict the

individual listener’s response to a speech signal on a word-by-

word or phoneme-by-phoneme basis. As an example, the mi-

croscopic method proposed in [8] uses an auditory model to ex-

tract features from speech signals and the dynamic time warp-

ing algorithm to compare the features extracted from a degraded

signal to its clean counterpart for predicting the intelligibility of

single words.

In another microscopic framework [9], Kollmeier et al.

have considered the outputs of an ASR system as predictors of

speech perception in both normal-hearing and hearing-impaired

listeners. In this method, in contrast to the previously men-

tioned intelligibility prediction methods, it is not required to

have access to the clean signal as a reference for predicting the

speech intelligibility. Also, this method can benefit from the

language knowledge implemented as a grammar in ASR sys-

tems. In [10], it has been shown that in listening tests, humans

are taking advantage of their prior knowledge about the char-

acteristics of speech units such as phonemes. Therefore, the

authors have suggested to take the phonetic information into

account in the design of instrumental quality or intelligibility

measures. Otherwise, comparing the processed speech only to a

signal-based reference can lead to unreasonably low quality es-

timates in scenarios like artificial speech bandwidth extension.

A non-intrusive prediction of intelligibility has been introduced

in [11, 12] that uses either the oracle transcriptions or the ASR-

recognized transcriptions of the speech signal and synthesizes

the clean features, required inside an intrusive intelligibility pre-

diction method.

Microscopic methods promise to be more precise in esti-

mating intelligibility and in diagnosing problems due to spe-

cific phoneme confusions. We have previously proposed an ap-

proach [13] that uses the logarithm of likelihood ratio of the true

and the ASR-recognized word as an objective metric for the in-

telligibility prediction. In this paper, we introduce two other

new heuristic measures for predicting the speech intelligibility

from a microscopic point of view. The proposed measures are

extracted utilizing an HMM-based ASR system, which will be

explained and inspected in detail in the following sections.

2. ASR-based Microscopic Intelligibility
Measures

Within the process of recognizing a speech signal, an HMM-

based ASR system can compute some intermediate features that

are indicative of its confidence. The likelihood of N-best state

sequences or N-best word choices are primary examples [14].

Consequently, it can be hypothesized that such features con-

tain information about the intelligibility of speech units as well.

Moreover, it can be stated that the less intelligible a speech sig-

nal is, the more errors are expected in the ASR output. Hence,

the time alignment information, estimated during the recogni-

tion process, can be used as another source of information on the

intelligibility of speech units. In order to exploit such HMM-

based features in the context of speech intelligibility prediction,

the normalized likelihood difference (NLD) and the time align-

ment difference (TAD) are introduced in this paper.

Prior to extracting the NLD and TAD, an HMM-based
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Figure 1: Block diagram of the first proposed speech intelligibility measure, the NLD.

speech recognition system must be trained. Here, for each word

ν in the vocabulary, one HMM λν is built. The parameters of

each HMM can be estimated by optimizing the likelihood of

the training set observation vectors for the associated word or

by discriminative training. Based on these trained models, Fig-

ure 1 and Figure 2 illustrate the schematic diagram of extract-

ing the proposed measures NLD and TAD, respectively. The

detailed description of these measures is provided below. It is

notable that the introduced measures, here, are extracted at the

word level, however, it is possible to extend the current frame-

work for predicting the perception of phonemes as well.

2.1. Normalized Likelihood Difference (NLD)

In order to extract the NLD per word, the speech signal is seg-

mented into the constituent words and each segment is fed into

the system as an input. The first step in extracting the NLD is

to apply a feature extraction method to the input signal S and

estimate the observation sequence O = {o1o2 . . .oT }. Then,

the model likelihoods given the observation sequence are com-

puted for all possible words, P
(

λν |O
)

, 1 ≤ ν ≤ V . All model

likelihoods are sorted to find the first ν⋆(1) and second ν⋆(2)

most likely word:

ν
⋆(1,2)

= argmax
1≤ν≤V

(1,2)[
P
(

λν |O
)]

= argmax
1≤ν≤V

(1,2)[P
(

O|λν

)

P
(

λν

)

P
(

O
)

]

(1)

Here, P
(

λν |O
)

is the likelihood of the word model λν given

the observation sequence O and V is the number of all possible

words.

Since the probability of the observation sequence, P
(

O
)

,

is independent of word models and the prior probability of each

model, P
(

λν

)

, is equal here for all possible words, Equation (1)

can be reformulated to

ν
⋆(1,2)

= argmax
1≤ν≤V

(1,2)[
P
(

O|λν

)]

. (2)

As shown in Figure 1 and according to Equation (2), fol-

lowing the feature extraction, the forward algorithm is applied

to the observation sequence in order to compute the probabil-

ity of the input sequence given the model λν for all possible

words. Next, all probabilities are sorted and the words with the

first and second highest probability are selected. The word with

the highest probability ν⋆(1) is compared to the oracle transcrip-

tion of the signal νoracle. If they are equal, the NLD is defined

to be the difference between the likelihoods of the first λν⋆(1)

and the second λν⋆(2) best word models given the observation

sequence and normalized with the best likelihood. Otherwise,

the order of the difference between the two model likelihoods is

interchanged:

NLD =



















P
(

λν⋆(1) |O
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)

P
(

λν⋆(1) |O
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= ν
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P
(
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)

− P
(

λν⋆(1) |O
)

P
(
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⋆(1) 6= ν
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(3)

Similar to Equation 2, here, P
(

λν |O
)

can be replaced by

P
(

O|λν

)

and the NLD is computed in practice using the prob-

ability of the observation sequence given the word models.

2.2. Time Alignment Difference (TAD)

As a second metric, we consider the time alignment difference

(TAD) between the recognized and oracle transcriptions of the

input signal. The computational steps of this measure are shown

in Figure 2. Like the NLD, the TAD is estimated at the word

level, but the input to this method is the entire sentence. At

first, a feature extraction algorithm is applied to the input signal.

Then, a decoder is employed to perform a continuous speech

recognition on the observation sequence O. Lastly, the recog-

nized time alignment for a specified keyword is compared to its

oracle time alignment and their relative difference is computed

as the TAD measure

TAD =
|TbRec − TbOracle|+ |TeRec − TeOracle|

L
, (4)
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Figure 2: Block diagram of the second proposed speech intelligibility measure, the TAD.

where TbRec and TbOracle are the recognized and the oracle

beginning frame index of a single word, respectively. Similarly

TeRec and TeOracle represent the recognized and the oracle

ending frame index of the same word and lastly, L is the word

length in frames.

3. Experiments

3.1. Speech Intelligibility Database

The original Grid corpus [15] and its noisy version [16] have

been used in the following experiments. The original corpus

contains 34000 clean speech signals in total, recordings of 34

English speakers made at the University of Sheffield. Each Grid

utterance is a 6-word sentence with a fixed grammar: <Verb

(4)- Color (4)- Preposition (4)- Letter (25)- Digit (10)- Adverb

(4)>, where the numbers in parentheses represent the number

of available choices for each word type.

In addition to the clean Grid database, there is also a noisy

version, which has been created by adding speech-shaped noise

to the clean signals at 12 different signal-to-noise ratios (SNRs)

from -14 dB up to 6 dB in steps of 2 dB, plus 40 dB (labeled as

clean). For the noisy database, the results of a listening test con-

ducted on 20 listeners with normal hearing are available. Each

participant has listened to 2000 utterances and has been asked

to recognize three keywords, the color, letter, and digit [16].

3.2. Experimental Setups

The first step in all experiments is the extraction of features from

the speech signals. As features, the first 13 Mel frequency cep-

stral coefficients (MFCCs) plus their first (∆) and second order

derivatives (∆∆) were used. Hamming-windowed frames with

a length of 25 ms and a frame shift of 10 ms were chosen for

the MFCC extraction algorithm. The sampling frequency was

set to 25000 Hz in all experiments.

For ASR, each word was modeled using a linear left-to-

right HMM, resulting in 51 whole-word HMMs plus one si-

lence model. The number of states were chosen as three times

the number of phonemes of the modelled word. A 2-mixture di-

agonal covariance GMM represents the state output distribution

of all HMMs.

In order to be able to use the entire data collected in the

listening test for evaluating the intelligibility measures, all ex-

periments were carried out with 5-fold cross validation. Dur-

ing each fold, the speech database was divided into the disjoint

training (60%), development (20%), and test (20%) sets. To

raise the accuracy, noise-dependent models were trained sepa-

rately at each SNR and development sets were used to assess

the accuracy of HMMs during the training.

To evaluate the proposed intelligibility measures, single

Gaussian models (GM) were utilized to predict the intelligibil-

ity of the Grid keywords. For each test, two GMs were trained;

one to represent the distribution of the intelligibility measure

for correctly recognized words and another one representing the

distribution of the same intelligibility measure but for words

misrecognized by human listeners. Hence, in this framework,

intelligibility measures were used as input features for GMs.

After training, GMs were employed to predict whether an in-

put speech signal can be recognized correctly at the word level.

Here, the development set data were used for training the GMs

and the test set data were used to evaluate them.

3.3. Evaluation

In the current work, the proposed intelligibility measures are as-

sessed for predicting the normal-hearing listeners’ performance.

The results, presented below, are averaged over all 20 listeners

available in the Grid database. Table 1 contains the accuracy

of the proposed intelligibility measures NLD and TAD in pre-

dicting human keyword recognition results, averaged over 12

SNRs. Also, the accuracy of the ASR system in the same task

is given in this table, which is computed by a direct comparison

of ASR and human recognition outcomes. In addition to the

mentioned methods, the well-known macroscopic intelligibility

measure STOI [3] was used as a baseline to predict the intel-

ligibility of Grid keywords. Please note that the STOI method

needs longer units of speech for its computations and normally,

it can not be used for computing the intelligibility of a sin-

gle word. Therefore, we have augmented the length of every

speech signal corresponding to a word by repeating the same

signal several times to allow for a computation of the STOI per

word. This repetition was implemented in the one-third octave

band domain. After framing and extracting the one-third octave

band representation of the signal in each frame, all frames were

repeated several times for both degraded and reference speech

signals without inserting any silence gaps. Therefore, no ar-

tifacts have been introduced to the signal, which might have

disadvantaged the STOI method.

Considering the results in Table 1, it is evident that both

proposed measures, NLD and TAD, have higher accuracies, on

average, in comparison to the STOI and to the direct use of the

ASR output. Moreover, the average accuracy of the TAD ex-

ceeds that of the NLD measure. A statistical significance anal-

ysis using Fisher’s exact test [17] has shown that the TAD is

statistically different from all competitors at a significance level

of 0.01. Furthermore, the comparison of the NLD and ASR re-

sults with that of the STOI using the same test has shown that
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Table 1: Average accuracy of all considered intelligibility mea-

sures in predicting the keyword recognition performance of 20

normal-hearing listeners.

ASR STOI NLD TAD

78.70 77.24 78.76 80.92

both methods are statistically different from the STOI, at a sig-

nificance level of 0.01 as well.

An SNR-based comparison of the above intelligibility pre-

diction methods is provided in Figure 3. One can observe that

the TAD has the highest accuracy in most SNRs down to -8 dB.

The STOI has a comparable performance to that of the TAD

at 2 dB and higher SNRs but its accuracy drops steeply in the

middle of the plot. The NLD and ASR have a similar pattern

and are less accurate at higher SNRs than the STOI and TAD

measures. The NLD is performing better than the ASR in most

SNRs except for the very high (greater than 4 dB) and very low

(smaller than -12 dB) ones.
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Figure 3: Accuracy of all considered intelligibility measures per

SNR in predicting the the keyword recognition performance of

20 normal-hearing listeners.

4. Conclusions and Future Work

In this work, we have introduced two new intelligibility mea-

sures, NLD and TAD, both derived from a simple ASR system.

These measures are proposed for predicting the intelligibility

from a microscopic point of view. The NLD is computed based

on the likelihood difference of the 2 best word choices and the

TAD depends on the time alignment information. It was shown

that, on average, both measures outperform the STOI method

as well as the direct ASR system output. The TAD achieves a

higher accuracy than the NLD. In some SNRs, both measures

have lower accuracies in comparison to the baseline methods

which needs more analysis. Extracting and appending comple-

mentary information to the proposed measures, and employing

a discriminatively trained, DNN-based ASR can be considered

as possible solutions for elevating the accuracy of our measures.

The capacity of these measures for predicting the individual per-

formance of hearing-impaired listeners will be examined in fu-

ture works. Also, an extension of the NLD based on the likeli-

hoods of n-best word hypotheses should be investigated in fu-

ture work, with the goal of predicting likely word confusions.
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