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Abstract

A limited number of research developments in the field of

speech enhancement have been implemented into commercially

available hearing-aids. However, even sophisticated aids remain

ineffective in environments where there is overwhelming noise

present. Human performance in such situations is known to

be dependent upon input from both the aural and visual senses

that are then combined by sophisticated multi-level integration

strategies. In this paper, we consider the opportunities and chal-

lenges presented by hearing-aid development in an audio-visual

(AV) speech context. First, we posit the case for new multi-

modal AV algorithms that enhance speech quality and intelligi-

bility with the aid of video input and low-latency combination

of audio and visual speech information. Second, we consider

the challenges that the AV setting presents to hearing aid eval-

uation. We argue that to meaningfully reflect everyday usage,

hearing aid evaluation needs to be performed in an audio-visual

setting regardless of whether hearing aids are directly using vi-

sual information themselves. We consider the need for new AV

speech in noise listening tests, and for research into techniques

for predicting objective AV speech quality and intelligibility.

Finally, an AV speech enhancement evaluation challenge is pro-

posed as a starting point for stakeholder discussion.

Index Terms: audio-visual speech, speech enhancement,

speech intelligibility assessment

1. Introduction

The multimodal nature of speech is well established. Speech

is produced by the vibration of the vocal cords being filtered

according to the configuration of articulatory organs. Due to

the visibility of some of these articulators (i.e., lips, teeth and

tongue), there is an inherent and perceptible relationship be-

tween audio and visual speech properties. Pioneering work

[1, 2, 3] demonstrated that listeners exploit this relationship, un-

consciously lip reading to improve the intelligibility of speech

in noise [4]. Further, looking at a speaker makes speech more

detectable in noise [5], i.e., as if audio cues are being visually

enhanced [6].

Embracing the multimodal nature of speech presents both

opportunities and challenges for hearing assitive technology: on

the one hand there are opportunities for the design of new mul-

timodal algoirthms; on the other hand multimodality challenges

the current standards for hearing aid evaluation, which gener-

ally consider the perception of the audio signal in insolation.

This paper will first consider the potential benefits of de-

signing fully audio-visual hearing devices. In particular, we

consider the design of a new breed of device that employs both

microphones and video sensors. Such a device has the potential

to extract information from the pattern of the speaker’s face and

lip movements and to employ this information as an additional

input to speech enhancement algorithms. In Section 2 we dis-

cuss the AV-COGHEAR project that is aiming to build and test

prototypes of this technology.

In Section 3 we turn attention to the challenge of hearing

device evaluation. Our main concern in this regard is that stan-

dard evaluation strategies, which use an audio-only setting, may

not be predictive of a device’s performance when used in real

multimodal conditions. This is just as much true for devices

that use audio-only input as it is for audio-visual devices. We

consider the requirements of a fully multimodal evaluation and

conclude in Section 4 by making a proposal for an open multi-

modal speech enhancement challenge that we hope will stimu-

late fresh research in this area.

2. Audio-Visual speech enhancement

2.1. Background

Despite decades of research, there are are few speech enhance-

ment algorithms that can reliably increase the intelligibility of

speech corrupted by complex noises typical of everyday listen-

ing conditions. For example, spectral subtraction can be very

effective for reducing the perception of noise in stationary con-

ditions, but the apparently ‘cleaner’ processed speech turns out

to be no easier to understand. If multiple microphones are avail-

able then beamforming algorithms can lead to genuine speech

intelligibility improvements but even these techniques are hard

to employ in an unpredictable noise environment. Consequently

hearing aid algorithms achieve most of their benefit simply by

amplifying the signal into the audible range, and offer little ad-

vantage for speech listening when speech is present in high lev-

els of background noise.

There is reason to believe that, in contrast to audio-ony

algorithms, audio-visual speech enhancement approaches may

be able to offer consistent intelligibility gains – especially for

hearing impaired listeners. To understand why visual features

may be beneficial it is important to understanding why noise

renders speech less intelligible in the first place. The com-

monly understood view is that the noise sources reduce speech

intelligibility by energetically masking the target source. Vi-

sual signals can then restore intelligibility by delivering pho-

netic information that has been obliterated in the masked re-

gions. However, this is only part of the picture. Intelligibility is

also governed by informational masking (IM), i.e., the degree

to which the auditory system is able to, i) segregate spectro-

temporal (ST) regions that are speech dominated from those

that are background-dominated, and ii) focus attention on the

target regions.
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IM is amplified by even mild hearing impairment, leading

to large speech intelligibility losses in social situations where

speech is present in the noise background. It has been suggested

that this is partly due to the loss of precision with which ‘group-

ing cues’ are encoded - i.e., signal properties such as periodicity

and apparent location that allow for a signal to be sequentially

organised, [7]. Schwartz et al. [8] have shown that visual cues

can be exploited at a pre-phonetic stage, reducing IM. Essen-

tially, visual cues can supplement auditory grouping cues, pro-

viding a signal that directs attention to the ST regions dominated

by the target source.

We believe that listeners may benefit from an AV hearing

device that is able to mimic the IM releasing function of visual

cues. For example, the device would use the visual information

to direct the audio signal processing to amplify speech signal

components and attenuate noise components.

2.2. The AV-COGHEAR project

The ongoing UK Engineering and Physical Sciences Research

Council (EPSRC) funded AV-COGHEAR project, collabora-

tively led by Stirling and Sheffield Universities, is a first attempt

at developing a cognitively-inspired, adaptive and context-

aware approach for combining audio and visual cues (e.g., from

lip movement) to deliver speech intelligibility enhancement [9].

The project’s overarching goal is the development of next-

generation multi-modal hearing aids and listening devices that

have the potential to be a disruptive technology redefining user

expectations. Beyond hearing aid devices we foresee impact in

a number of areas including: cochlear implant signal process-

ing, speech recognition systems, auditory systems engineering

in general, and clinical, computational, cognitive and auditory

neuroscience. A preliminary deep-learning-driven, multi-modal

speech enhancement framework pioneered at Stirling [10] is

currently being significantly extended to incorporate innovative

perceptually-inspired models of auditory and AV scene analy-

sis developed at Sheffield [11]. Further, novel computational

models and theories of human vision developed at Stirling are

being deployed to enable real-time tracking of facial features.

Contextual multimodality selection mechanisms are being ex-

plored, and collaborations with SONOVA and MRC IHR, will

facilitate envisaged delivery of a clinically-tested software pro-

totype.

In the literature, much progress has been made to develop

enhanced speech processing algorithms capable of improving

speech quality. In contrast, little work has been conducted to

design algorithms that can improve speech intelligibility. In

this project, our hypothesis is that it is possible to combine vi-

sual and acoustic input to produce a multimodal hearing device

that is able to significantly boost speech intelligibility in the ev-

eryday listening environments, in which traditional audio-only

hearing devices prove ineffective.

To test this hypothesis, we are collaboratively working to

develop and clinically validate a next-generation cognitively-

inspired, AV hearing-device software prototype, capable of real-

time implementation, which will autonomously adapt to the na-

ture and quality of its visual and acoustic environmental inputs.

In this context, we have currently developed two contrasting

approaches to speech enhancement developed respectively at

Stirling and Sheffield: (1) A deep lip-reading driven Weiner

filtering approach, shown in Figure 1 and (2) an audio-visual

analysis-resynthesis approach, depicted in Figure 2 [12]. The

preliminary objective and subjective evaluation has revealed the

potential and reliability of the proposed AV technology as com-

pared to the state-of-the-art audio only speech processing tech-

niques.

3. Speech enhancement evaluation in
realistic AV settings

3.1. Background

The development of hearing devices that utilise both audio and

visual information, highlights the growing need for hearing de-

vices to be evaluated in realistic multimodal settings. In the lit-

erature, there exist several standards for evaluating hearing aid

algorithms in audio only settings, ranging from the Connected

Speech Test (CST) (CST; [13]), the Speech Intelligibility In-

dex (SSI) [14], to Kates’ extension to the SSI [15]. However,

there are no established standards for evaluating hearing-aid al-

gorithms in audio-visual settings. Note, an audio-visual exten-

sion of the CST [16] was proposed shortly after the audio-only

test but has not been widely adopted.

Evaluating a hearing device in an audio-only setting may

produce a misleading view of the speech intelligibility benefits

it will provide. Except in a few naturally audio-only situations,

(e.g., telephone conversations), hearing aid users who are strug-

gling to understand speech in noise will be closely attending the

speaker’s lips. These listeners will therefore experience a vi-

sual benefit which will improve their aided-performance. Note,

this is true regardless of whether the hearing aid is using the

visual signal itself. The size of this visual benefit needs to be

accounted for.

Visual-benefit would not be a problem for hearing aid eval-

uation if the size of the benefit was independent of the hearing

aid algorithm. If this was true then the ranking of algorithms

would remain the same and a best algorithm could still be cho-

sen. However, this is unlikely to be the case. For example,

consider an algorithm that emphasises aspects of the acoustic

signal that are redundantly encoded in the visual signal. This

algorithm might provide large benefits in an audio-only evalua-

tion but then be shown to proffer little benefit in a setting where

the user sees the lip movements directly.

Despite the clear necessity for hearing aid speech perfor-

mance to be evaluated from an AV perspective, there has been

very little work in this direction. Recently, Wu and Bentlier [17]

examined how visual cues impact directional benefit and pref-

erence for the directional microphone hearing-aid. The authors

administered two speech recognition in noise tests to assess di-

rectional benefit: (1) the AV version of the Connected Speech

Test (CST; [13, 16]) and (2) the Hearing in Noise Test [18] to

investigate the impact of visual cues on the directional benefit.

It was reported that visual cues significantly improved speech

recognition performance to its ceiling level and reduced the di-

rectional benefit and preference for directional processing.

3.2. Challenges for audio-visual hearing aid evaluation

In this section we outline the main challenges facing audio-

visual speech intelligibility testing.

3.2.1. Audio-visual HA performance predictors

In an ideal world, hearing aid algorithms could be evaluated

cheaply using algorithms that would predict the intelligibility

and/or quality of the processed speech. The processed audio

speech signal and its video counterpart could be fed into an ob-

jective test that would accurately predict intelligibility of the

signal. Unfortunately, this is an unrealistic proposition which
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Figure 1: Deep lip-reading driven Weiner filtering (Stirling)

Figure 2: Audio-visual analysis-resynthesis framework (Sheffield)

remains a challenge even for audio-only evaluation.

There have been many proposed metrics for objective

speech quality and intelligibility prediction. Algorithms are

categorised as intrusive or non-intrusive depending on whether

they require a clean speech reference signal or not, respectively.

We can assume that for hearing-aid development a reference

signal can be available and therefore intrusive algorithms can

be applied. These include the normalized covariance metric

(NCM) [19] and short-time object intelligibility (STOI) [20]

which predict intelligibility and perceptual evaluation of speech

quality (PESQ) [21] which predicts speech quality. Although

different in detail, these algorithms all operate by making a

weighted comparison between an auditorily-inspired represen-

tation of the reference and corrupted signal.

More recently developed predictors have been especially

designed for hearing aid (HA) processing. These include

the HA speech quality index (HASQI) [22], the HA speech

intelligibility index (HASPI) [23], and an extension of the

perception-model-based quality prediction method (PEMO-Q)

[24] adapted for hearing impairment (PEMO-Q-HI) [25]. These

predictors again compare a reference and a processed signal in

an auditory model space, however, their auditory models can be

tuned to mimic the effects of a listener’s hearing impairment,

(e.g., raised thresholds, filter broadening, etc).

A particular problem with these approaches is that their per-

formance can be sensitive to the type of processing performed

by the aid (see [26] for a review). For example, non-linear fre-

quency compression (NFC) – a recent development in hearing

aids which warps the signal spectrum to fit the listener’s us-

able frequency range – can generate big apparent differences

between the reference and processed signal. Unless the metric

is designed to expect NFC and compensate for this frequency

warping it will predict the NFC processed signal to have low

quality/intelligibility. The fundamental problem here is that the

metrics are necessarily built on shallow models of speech per-

ception. The resulting need to fit the prediction models to hear-

ing aid algorithms is surely problematic if they are expected to

effectively evaluate novel and unanticipated approaches to hear-

ing aid signal processing.

When considering audio-visual intelligibility the situation

is worse. There are no adequate models of how acoustic and

visual speech information are combined during speech percep-

tion. There are currently no models that can predict effects such

as informational masking release in non-stationary masker con-

ditions. Without this understanding there is no basis on which

to start building models of AV speech intelligibility.

3.2.2. Difficulties with speech-in-noise listening tests

There are a large number of standard speech-in-noise listen-

ing tests that can be used to directly measure the intelligibil-

ity benefit of a hearing device. They include adaptive and

fixed SNR tests. The former include the Hearing in Noise Test
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(HINT) [27], QuickSIN [28], Words in Noise (WIN) [29, 30]

and Bamford-Kowal-Bench SIN (BKB-SIN) [31, 32]. These

tests automatically adapt the SNR to the threshold at which

communication breaks down (i.e., at which a fixed percentage

of words are incorrectly recognised). They are quick and easy

to administer but have the drawback of not being able to provide

information about performance at other SNRs above and below

this threshold. Fixed SNR tests such as CST [13] and Speech

Perception in Noise Test (SPIN) [33] measure the percentage

of words correctly recognised at a presentation SNR. However,

they are susceptible to ceiling effects, i.e., no benefit can be

measured once all words are recognised correctly. Choosing an

appropriate SNR can be difficult.

Tests vary with respect to the type of speech material - some

using isolated words and others complete sentences. Sentences

are regarded as more appropriate materials for intelligibility

measurement as they reflect real speech and produce steeper

psychometric functions that more accurately estimate threshold

SNRs. Sentences need to be carefully designed to be phonet-

ically balanced and to have low predictability. So-called ‘ma-

trix tests’ achieve this by using randomly chosen words from

the closed-set in each word position in a sentence: e.g., a sen-

tence might be composed as: <name>, <verb>, <number>,

<adjective>, <noun> with 10 choices for each slot leading to

100,000 possible sentences. Such tests have been designed for

many different languages, e.g. German [34, 35], Spanish [36],

English [37], etc. There has been recent success in predicting

sentence test performance in a wide range of noise conditions

using statistical techniques adapted from the speech recognition

community [38].

Speech-in-noise tests have primarily been designed for use

in clinical settings for fitting a device to a given user. Com-

paring two devices for a given user is a well-posed problem.

However, if a conclusion is required about which device is bet-

ter in a more general sense, then obvious problems emerge. The

question is impossible to answer independently of some charac-

terisation of the user, i.e., the precise nature and degree of their

hearing deficit. The test would then require a pool of listeners

matching this characterisation that is large enough to average

out remaining individual differences. This is particularly prob-

lematic given that audiograms – the standard characterisation of

hearing deficit – can be poor predictors of speech in noise per-

formance (and even poorer predictors of audio-visual speech

recognition ability).

The difficulties experienced with audio-only testing are

compounded in audio-visual settings, specifically: the visual

cues may make it more likely to encounter ceiling effects; the

test-retest scores are likely to be more variable given the in-

creased cognitive complexity of the task; there is a starker con-

trast between controlled, well-framed, clearly articulated visual

input and video characteristic of everyday conversational set-

tings; and selecting homogeneous listener pools is more chal-

lenging as there are large and unpredictable individual differ-

ences in visual speech benefit amongst listeners.

3.2.3. The need for a realistic AV corpus

Reliable evaluation of future AV speech filtering technology

will require subjective intelligibilty assessment. This raises the

question of what type of speech material to use. Although there

exist a number of small well-controlled audio-visual speech cor-

pora, such as BANCA [39], AVICAR [40], VidTIMIT [41],

and Grid [42], there is a need for evaluation of multi-modal

speech enhancement systems using realistic audiovisual speech

data. Audio-visual datasets are required in which speakers are

speaking more naturally than in many existing corpora, includ-

ing conversational speech and imperfect visual data. This is

represented by the speaker moving their head, obscuring their

face, and also different levels of background noise to take ac-

count of the Lombard effect (where speakers naturally adjust

their speech to take account of different levels of background

noise). To our knowledge, there is no corpus available that con-

tains a sufficient range of AV speech data, or variety of A and

V noise (i.e., acoustic noise, speaker movement and occlusion,

etc.).

4. Conclusion – Towards an open AV
evaluation framework

Future multimodal hearing devices will demand new ap-

proaches to evaluation. There will be a need to reconsider how

hearing aid algorithms are evaluated during development so as

to incorporate visual input, subject to real-time, low-latency

constraints. There is also need to reconsider how devices are

prescribed and fitted to patients. It will no longer be appropri-

ate to use audio-only speech-in-noise tests. For the new devices

the key question will be how the AV processing of the device in-

teracts with the AV processing of the user when presented with

realistic AV input.

New standards will only emerge from discussion across the

sector involving manufacturers, health care professionals, audi-

ologists and patients. We hope the 2017 CHAT Workshop will

provide a starting point for this activity. To stimulate progress

we plan to organise an open competition for AV speech en-

hancement evaluation, which could be run as part of an inter-

national INTERSPEECH Workshop in 2018. The competition

could run along similar lines to the ISA Blizzard Challenge

where the cost of participation pays for evaluation of the al-

gorithms.

We conclude by presenting a tentative proposal for hearing

algorithm evaluation with the aim of seeking feedback from the

community.

The evaluation campaign will have two phases:

Phase 1 - development of enhancement algorithms: The

proposal would be to use the existing AV Grid corpus [42] as

the source material. This has a design similar to a matrix test

and has already had extensive use in audio-only speech intel-

ligibility studies. We would then mix this corpus with every-

day complex noise backgrounds such as café and street noises

recorded in the CHiME-3 corpus [43]. Participants would be

invited to apply their algorithms (audio-only or audio-visual).

We would then measure subjective intelligibility and subjective

quality using a large bank of paid listening subjects who would

be presented with the processed audio alongside the video. The

evaluators could be NH or a homogenous group of HI listeners.

Phase 2 - development of new objective measures: Phase

1 will generate a large amount of listener data, i.e., showing

how listeners have responded to variously-processed noisy AV

speech samples. This data can then be used to test models that

predict AV intelligibility and speech quality. We could imme-

diately evaluate existing audio-based predictors which would

be expected to underestimate AV performance. The challenge

would then be to develop new AV predictors that extend these

models. We would release a subset of the data from Phase 1 for

model development and retain a hidden set for model evalua-

tion.
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[39] E. Bailly-Bailliére, S. Bengio, F. Bimbot, M. Hamouz, J. Kittler,
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