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Welcome from Conference Chair

The CHAT workshop was a one-day workshop organised as a satelitte event of Interspeech 2017
held at the University of Stockholm, Sweden on the 19th August 2017. It was designed to bring
together people from the speech and hearing research communities to explore fresh approaches to
hearing assistive technology. The event was sponsored by the International Speech Communication
Association (ISCA), the UK Engineering and Physical Sciences Research Council (EPSRC) and the
UK Medical Research Council (MRC).

For further details of the event and news of forthcoming CHAT workshops, please visit http://
spandh.dcs.shef.ac.uk/chat.
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Space-aware hearing devices - Making hearing aids smarter

Volker Hohmann

Medizinische Physik and Cluster of Excellence Hearing4all, Universität Oldenburg, Germany

Abstract
In spite of the tremendous advances in hearing device technol-
ogy since the introduction of the first hearing aid with digital
signal processing in 1996, the rehabilitation of acoustic commu-
nication in patients with sensorineural hearing loss is still lim-
ited. In particular, significant problems are reported in difficult
acoustic conditions characterized by high levels of background
noise and reverberation. In addition to a reduction in speech
intelligibility, other important factors are affected, such as the
awareness of the acoustic space and of the spatial configuration
and movement of sound sources.

To tackle these problems, recent approaches incorporate
knowledge about the principles of human auditory scene anal-
ysis to build a representation of the acoustic environment and
to decide about the appropriate filtering that makes the attended
sound source better audible while keeping the sound features
that affect the perception of the acoustic space intact. As an
example, a binaural multi-microphone system will be described
that estimates the direction of arrival of several sound sources
present in the scene, and selects and enhances one of the sources
that was identified as the attended (target) source by analyzing
the eye movements of the subject.

To develop and test such “space-aware” hearing devices
and their underlying signal processing schemes, established lab-
based methods are not sufficient, as they make unrealistic as-
sumptions about the acoustic conditions in real life. In par-
ticular, different from the stationary spatial configuration of
fixed sound sources used in lab-based setups, real-life scenar-
ios are dynamic in the sense that the sound sources constantly
move, that the attended source may switch and that the sub-
ject is actively listening, i.e., moves in response to visual and
auditory input conditioned on its current hearing wish. To in-
corporate these key factors of acoustic communication in re-
producible lab-based measurement setups, virtual audiovisual
environments in combination with “subject-in-the-loop” evalu-
ation methods are increasingly used. One study will presented
that tested the performance of different classes of hearing aid al-
gorithms in a number of different virtual acoustic environments
including scenes with a moving listener. The results confirm
previous findings that spatial complexity has a major impact on
algorithm benefit and shows that performance measured with
established lab-based setups does not predict performance in
more complex conditions well. In a second study, the influ-
ence of visual cues on motion behavior and involvement of the
subject in the listening task was measured. It was found that
subjects have different movement strategies when following a
conversation. This shows that active listening is individual and
requires the hearing devices to accurately represent the acoustic
scene and to dynamically detect the attended sound source in
order to keep the spatial impression intact while enhancing the
target source.
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A Simulation Study on Binaural Dereverberation and Noise Reduction based
on Diffuse Power Spectral Density Estimators

Ina Kodrasi, Daniel Marquardt, Simon Doclo

University of Oldenburg, Department of Medical Physics and Acoustics
and Cluster of Excellence Hearing4All, Oldenburg, Germany

{ina.kodrasi,daniel.marquardt,simon.doclo}@uni-oldenburg.de

Abstract
Enhancement techniques in binaural hearing aids are crucial to
improve speech understanding for hearing impaired persons in
reverberation and noise. Since reverberation and noise can be
commonly modeled as diffuse sound fields, many state-of-the-
art techniques require an estimate of the diffuse power spec-
tral density (PSD). In this paper we evaluate the performance
of binaural dereverberation and noise reduction techniques us-
ing several diffuse PSD estimators in realistic acoustic sce-
narios. Two state-of-the-art techniques are considered, i.e.,
the binaural multi-channel Wiener filter and the binaural min-
imum variance distortionless response beamformer with partial
noise estimation followed by a postfilter. The considered dif-
fuse PSD estimators are blocking matrix-based and eigenvalue
decomposition-based estimators. A least-squares generalization
of dual-channel blocking matrix-based estimators to the multi-
channel case is also presented, yielding the same diffuse PSD
estimate as a recently proposed maximum likelihood estimator.
Simulation results show the applicability of diffuse PSD estima-
tors for binaural dereverberation and noise reduction, with the
eigenvalue decomposition-based estimators always yielding the
best performance.
Index Terms: hearing aids, binaural cues, blocking matrix,
eigenvalue decomposition

1. Introduction
Dereverberation and noise reduction techniques in binaural
hearing aids are crucial to improve speech intelligibility for
hearing impaired persons [1]. In addition to reducing the in-
terference, i.e., reverberation and noise, another important ob-
jective of such techniques is the preservation of the listener’s
impression of the acoustical scene by preserving the binaural
cues of the speech source and of the interference [2, 3].

In [2] the binaural multi-channel Wiener filter (MWF) has
been presented, which can be decomposed into a binaural min-
imum variance distortionless response (MVDR) beamformer
and a single-channel Wiener postfilter. The binaural MWF and
MVDR beamformer preserve the binaural cues of the desired
speech source, but distort the cues of the interference such that
both the speech source and the residual interference are per-
ceived as coming from the same direction [4]. In order to also
(partially) preserve the binaural cues of the residual interfer-
ence, the binaural MWF with partial noise estimation (MWF-
N) [4,5] and the binaural MVDR beamformer with partial noise
estimation (MVDR-N) [3] have been proposed, where a trade-
off parameter controls the trade-off between interference reduc-
tion and cue preservation. The trade-off parameter yielding
a desired cue preservation level can be analytically computed

This work was supported in part by the Cluster of Excellence 1077
“Hearing4All”, funded by the German Research Foundation (DFG),
and the joint Lower Saxony-Israeli Project ATHENA, funded by the
State of Lower Saxony.

only for the binaural MVDR-N beamformer [3], making it a
computationally advantageous technique in comparison to the
MWF-N. To further increase the interference reduction perfor-
mance, a single-channel Wiener postfilter can be applied at the
output of the MVDR-N beamformer [3]. Since reverberation is
commonly modeled as a diffuse sound field [6–11] and since
diffuse background noise is commonly encountered in binaural
applications, these binaural speech enhancement techniques re-
quire (among other parameters) an estimate of the diffuse power
spectral density (PSD).

Several multi-channel diffuse PSD estimators have been
proposed, such as blocking matrix-based estimators [6, 8, 12–
15] and eigenvalue decomposition-based estimators [10, 11].
Blocking matrix-based estimators estimate the diffuse PSD by
blocking the target signal using knowledge of the direction
of arrival (DOA) of the speech source [6, 8, 15], blind source
separation methods [13], or blind system identification meth-
ods [14]. The multi-channel blocking matrix-based estimator
in [6] uses a maximum likelihood formulation to estimate the
diffuse PSD from multiple reference signals, whereas the dual-
channel blocking matrix-based estimators in [13–15] estimate
the diffuse PSD by solving an equation based on a single refer-
ence signal. Eigenvalue decomposition-based estimators on the
other hand do not require a blocking matrix and directly esti-
mate the diffuse PSD using the eigenvalues of the prewhitened
input PSD matrix.

The objective of this paper is to evaluate the performance of
the binaural MVDR beamformer followed by a postfilter (i.e.,
the binaural MWF) and the binaural MVDR-N beamformer fol-
lowed by a postfilter using blocking matrix-based and eigen-
value decomposition-based diffuse PSD estimators. In addi-
tion, a least-squares generalization of the dual-channel block-
ing matrix-based estimators from [13–15] to the multi-channel
case is presented, which happens to be equivalent to the multi-
channel estimator from [6]. The blocking matrix is constructed
based on the DOA of the speech source, which is estimated us-
ing the binaural DOA estimator proposed in [15]. Simulation
results show that the performance of all considered diffuse PSD
estimators is high, with the eigenvalue decomposition-based
PSD estimators resulting in the best performance. In addition,
it is shown that the performance of the blocking matrix-based
dual-channel estimator from [15] is very similar to the per-
formance of the blocking matrix-based multi-channel estimator
from [6], suggesting that increasing the number of microphones
within the blocking matrix-based framework does not increase
the diffuse PSD estimation accuracy.

2. Configuration and Notation
We consider a binaural hearing aid configuration consisting of
M = ML +MR microphones, withML denoting the number of
microphones of the left hearing aid and MR denoting the num-
ber of microphones of the right hearing aid. In the short-time
Fourier transform domain, the M -dimensional vector of the re-
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ceived microphone signals at frequency index k and frame in-
dex l can be written as

y(k, l) = [YL,1(k, l) . . . YL,M L (k, l)

YR,1(k, l) . . . YR,MR (k, l)]T ,
(1)

with Y{L,R},m(k, l) the m-th microphone signal of the left and
right hearing aid. In a reverberant and noisy acoustic scenario,
y(k, l) is given by

y(k, l) = x(k, l) + d(k, l) + v(k, l), (2)

with x(k, l) the direct and early reverberation speech compo-
nent, d(k, l) the diffuse sound component, and v(k, l) the noise
component. The diffuse sound component d(k, l) models the
late reverberation [6–11] as well as any noise which can be
well approximated by a diffuse sound field, such as background
noise in large crowded rooms. The noise component v(k, l)
represents any remaining noise which cannot be modeled by a
diffuse sound field, such as uncorrelated sensor noise. For con-
ciseness, the frequency index k will be omitted in the remainder
of this paper.

For a single-source scenario, the direct and early reverber-
ation speech component x(l) can be expressed in terms of the
target signals SL(l) and SR(l) (i.e., direct and early reverber-
ation speech components) in the reference microphones of the
left and right hearing aids as

x(l) = S{L,R}(l)a{L,R}(l), (3)

with aL(l) and aR(l) the M -dimensional vectors of relative
early transfer functions (RETFs) of the target signals from the
reference microphones to all M microphones. The target sig-
nal S{L,R}(l) is often defined as the direct speech component
only [6–11], such that the vector a{L,R}(l) can be constructed
based on a DOA estimate and head models or measurements of
anechoic acoustic transfer functions (ATFs). The PSD matrix
of the microphone signals is defined as

Φy(l) = E{y(l)yH(l)}, (4)

with E{·} the expected value operator. As in many speech en-
hancement techniques, in the following it is assumed that the
components in (2) are mutually uncorrelated, such that Φy(l)
can be written as

Φy(l) = Φx(l) + Φd(l) + Φv(l), (5)

with Φx(l), Φd(l), and Φv(l) denoting the PSD matrices of
x(l), d(l), and v(l), respectively. Using (3), Φy(l) can be ex-
pressed as

Φy(l) = ΦS{L,R}(l)a{L,R}(l)a
H
{L,R}(l)︸ ︷︷ ︸

Φx(l)

+ Φd(l)Γ︸ ︷︷ ︸
Φd(l)

+Φv(l), (6)

with ΦS{L,R}(l) the time-varying PSD of the target signal, i.e.,
ΦS{L,R}(l) = E{|S{L,R}(l)|2}, Φd(l) the time-varying PSD of
the diffuse sound component, and Γ the time-invariant spa-
tial coherence matrix of the diffuse sound field. The spatial
coherence matrix Γ is assumed to be known, since it can be
constructed based on head models [16] or measurements of
anechoic ATFs [9, 17]. In order to simplify the notation, in
the following we define the interference component u(l) =
d(l) + v(l) and the interference PSD matrix

Φu(l) = Φd(l)Γ + Φv(l). (7)

The objective of binaural speech enhancement techniques is to
suppress the interference and obtain estimates of the target sig-
nals ŜL(l) and ŜR(l) by applying M -dimensional filter vectors
wL(l) and wR(l) to all microphone signals (cf. Section 3), i.e.,

Ŝ{L,R}(l) = wH
{L,R}(l)y(l). (8)

The time-varying input interaural coherence (IC) of the inter-
ference is defined as

ICin(l) =
eTL Φu(l)eR√

eTL Φu(l)eLeTR Φu(l)eR
, (9)

with e{L,R} an M -dimensional selector vector with one ele-
ment equal to 1 and all other elements equal to 0 such that
eT{L,R}a{L,R}(l) = 1. The time-varying output IC of the in-
terference is defined as

ICout(l) =
wH

L (l)Φu(l)wR(l)√
wH

L (l)Φu(l)wL(l)wH
R (l)Φu(l)wR(l)

. (10)

Since the IC is complex-valued, binaural speech enhance-
ment techniques typically aim at preserving the real-valued
magnitude-squared coherence (MSC) of the interference, de-
fined as

MSC(l) = |IC(l)|2. (11)

3. Binaural Speech Enhancement
In this section the derivation of the filter w{L,R}(l) based on
the binaural MVDR and MVDR-N beamformers followed by a
Wiener postfilter is briefly discussed.

3.1. Binaural MVDR and MVDR-N beamformers

The binaural MVDR beamformer [2] aims at minimizing the
output PSD of the interference while preserving the target sig-
nal in the left and right reference microphones. The binaural
MVDR beamformer can be computed as

wMVDR
{L,R} (l) =

Φ−1
u (l)a{L,R}(l)

aH{L,R}(l)Φ
−1
u (l)a{L,R}(l)

. (12)

As shown in [4], the beamformer in (12) preserves the binaural
cues of the speech source but distorts the output MSC of the in-
terference such that both the speech source and the residual in-
terference are perceived as coming from the same direction. In
order to better preserve the interference output MSC, and hence,
the impression of the acoustical scene, the binaural MVDR-N
beamformer has been proposed [3]. Aiming at preserving both
the target signal as well as a scaled version of the interference in
the left and right reference microphones, the binaural MVDR-N
beamformer can be computed as

wMVDR-N
{L,R} (l) = [1− η(l)]wMVDR

{L,R} (l) + η(l)e{L,R}, (13)

where η(l) denotes a (real-valued) scaling parameter between
0 and 1 which provides a trade-off between interference reduc-
tion and MSC preservation. The value of the parameter η(l)
yielding a desired user-defined interference output MSC can be
computed analytically [3].

3.2. Wiener postfilter

In order to further increase the interference reduction perfor-
mance, a single-channel Wiener postfilter can be applied at the
output of the MVDR and MVDR-N beamformers [3, 18], i.e.,

G{L,R}(l) =
ξ{L,R}(l)

1 + ξ{L,R}(l)
, (14)
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with ξ{L,R}(l) the a-priori signal-to-interference ratio (SIR) at
the beamformer output in the left and right hearing aid. The
a-priori SIR can be estimated using the decision-directed ap-
proach based on an estimate of the interference PSD at the
beamformer output [19]. The interference PSD at the beam-
former output can be computed as

Φout
{L,R},u(l) = wH

{L,R}(l)Φu(l)w{L,R}(l), (15)

with w{L,R}(l) the MVDR beamformer in (12) or the MVDR-
N beamformer in (13). In order to preserve the binaural cues of
the speech source and interference, a common postfilter G(l) is
applied to both hearing aids, with

G(l) =
√
GL(l)GR(l). (16)

In summary, in Section 5 we consider two different methods for
computing the filter w{L,R}(l), i.e.,

1. using an MVDR beamformer and a Wiener postfilter:

w{L,R}(l) = wMVDR
{L,R} (l)G(l) (17)

2. using an MVDR-N beamformer and a Wiener postfilter:

w{L,R}(l) = wMVDR-N
{L,R} (l)G(l) (18)

Computing the filters in (17) and (18) requires estimates of the
diffuse PSD Φd(l), noise PSD matrix Φv(l), and RETF vector
a{L,R}(l).

4. Diffuse PSD Estimators
In this section it is assumed that estimates of the noise PSD ma-
trix Φv(l) and RETF vector a{L,R}(l) are available, such that
only the diffuse PSD Φd(l) needs to be estimated. The noise
PSD matrix Φv(l) can in practice be estimated from the mi-
crophone signals using e.g. a multi-channel speech presence
probability estimator [20]. The RETF vector a{L,R}(l) can in
practice be estimated as in Section 5, i.e., using a DOA esti-
mator and measurements of anechoic ATFs [15]. To estimate
the diffuse PSD Φd(l), we consider blocking matrix-based and
eigenvalue decomposition-based estimators.

4.1. Blocking matrix-based estimators

In [13–15] dual-channel (i.e., M = 2) diffuse PSD estimators
using a single reference signal at the output of a blocking matrix
have been proposed. In the following, a least-squares general-
ization of these estimators for M > 2 is presented.

In order to estimate the diffuse PSD, an M × (M − 1)-
dimensional blocking matrix B(l) can be used to generate a
set of M − 1 reference signals containing only the interference
component, i.e.,

ũ(l) = BH(l)y(l), (19)

with B(l) such that BH(l)aL(l) = 0 or BH(l)aR(l) = 0.
Using aL(l), a blocking matrix can be computed from the first
M − 1 columns of the matrix T(l) defined as

T(l) = I− aL(l)aHL (l)

‖aL(l)‖2 , (20)

where I denotes the M × M -dimensional identity matrix. It
should be noted that many blocking matrices exist and one can
also be computed using aR(l) instead of aL(l) in (20). Based
on (6), the PSD matrix of the M − 1 reference signals at the
blocking matrix output is equal to

Φũ(l) = Φd(l) BH(l)ΓB(l)︸ ︷︷ ︸
Γ̃(l)

+ BH(l)Φv(l)B(l)︸ ︷︷ ︸
Φṽ(l)

. (21)

The PSD matrix Φũ(l) can be directly estimated from ũ(l),
whereas the matrices Γ̃(l) and Φṽ(l) can be computed using
the available diffuse coherence matrix Γ and the available noise
PSD matrix Φv(l). Since the only unknown quantity is the dif-
fuse PSD Φd(l), the system of equations in (21) represents an
overdetermined system of equations. A least-squares estimate
of the diffuse PSD can be obtained by minimizing the cost func-
tion

J(l) = ‖Φũ(l)−Φṽ(l)− Φd(l)Γ̃(l)‖2F , (22)

where ‖ · ‖F denotes the matrix Frobenious norm. Setting the
derivative of (22) with respect to Φd(l) equal to 0, the least-
squares estimate of the diffuse PSD can be computed as

Φ̂BM
d (l) =

trace{[Φũ(l)−Φṽ(l)]HΓ̃(l)}
trace{Γ̃H(l)Γ̃(l)}

, (23)

where trace{·} denotes the trace operator. For M = 2, Φ̂BM
d (l)

is equal to the PSD estimate derived in [13–15]. Interestingly,
for M > 2, Φ̂BM

d (l) is equal to the maximum likelihood PSD
estimate derived in [6].

4.2. Eigenvalue decomposition-based estimators

While the estimator in Section 4.1 requires knowledge of the
RETF vector, an RETF-independent eigenvalue decomposition-
based PSD estimator is proposed in [10, 11]. This estimator
requires knowledge of the PSD matrix Φc(l) = Φx(l)+Φd(l),
which can be computed as

Φc(l) = Φy(l)−Φv(l), (24)

with Φy(l) directly estimated from the microphone signals.
Based on (6), the prewhitened PSD matrix Γ−1Φc(l) is equal
to the sum of a rank-1 matrix and a scaled identity matrix, i.e.,

Γ−1Φc(l) = ΦS{L,R}(l)Γ−1a{L,R}(l)a
H
{L,R}(l)+Φd(l)I. (25)

As a result, the eigenvalues of Γ−1Φc(l) are equal to

λ1{Γ−1Φc(l)} = σ(l) + Φd(l), (26)

λj{Γ−1Φc(l)} = Φd(l), j = 2, . . . , M, (27)

with σ(l) the only non-zero eigenvalue of the rank-1 term
in (25). In [11] it is proposed to estimate the diffuse PSD us-
ing any of the last M − 1 eigenvalues λj{Γ−1Φc(l)}, j =
2, . . . , M . Due to signal model violations and estimation
errors in Φc(l), the last M − 1 eigenvalues of Γ−1Φc(l) are
not equal in practice. In this paper we consider two alterna-
tive eigenvalue decomposition-based PSD estimates Φ̂EVD

d,λ1
(l)

and Φ̂EVD
d,λ2

(l), with Φ̂EVD
d,λ1

(l) computed as the mean of the last
M−1 eigenvalues and Φ̂EVD

d,λ2
(l) computed as the second eigen-

value, i.e.,

Φ̂EVD
d,λ1

(l) =
trace{Γ−1Φc(l)} − λ1{Γ−1Φc(l)}

M − 1
, (28)

Φ̂EVD
d,λ2

(l) = λ2{Γ−1Φc(l)}. (29)

Using any diffuse PSD estimate in (23), (28), or (29), the avail-
able coherence matrix Γ, and the available noise PSD matrix
Φv(l), an estimate of the interference PSD matrix Φu(l) in (7)
can now be computed.
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5. Experimental Results
In this section the dereverberation and noise reduction perfor-
mance using the filters in (17) and (18) is investigated for differ-
ent reverberation times and signal-to-noise ratios (SNRs). In ad-
dition, the performance is investigated for a stationary speaker
as well as for a moving speaker. In order to focus on the dif-
fuse sound suppression, in the following it is assumed that the
microphone signals consist only of a direct and early reverber-
ation speech component and a diffuse sound component (i.e.,
late reverberation and diffuse background noise), i.e., v(l) = 0
and Φu(l) = Φd(l)Γ. For Φu(l) = Φd(l)Γ, the MVDR and
MVDR-N beamformers in (12) and (13) can be constructed us-
ing only the diffuse spatial coherence matrix Γ (i.e., the scalar
Φd(l) cancels out).

5.1. Setup

Signals were recorded in a laboratory with variable acoustics
at the University of Oldenburg using two 2-channel behind-the-
ear hearing aid dummies placed on the ears of a head-and-torso
simulator (HATS), i.e., ML = 2, MR = 2, and M = 4. The
stationary speaker was simulated by playing back clean speech
from a loudspeaker placed at a distance of 2 m from the cen-
ter of the head. Two stationary speaker scenarios were gener-
ated by placing the loudspeaker at two different angles θ1 and
θ2, with θ1 = 35◦ and θ2 = −35◦. The considered rever-
beration times for the stationary speaker scenarios were T60 ∈
{0.5 s, 0.75 s, 1 s}. The moving speaker was a human speaker
naturally walking in the frontal hemisphere of the HATS. The
considered reverberation time for the moving speaker scenario
was T60 ≈ 1 s. To simulate a diffuse noise field, the back-
ground noise was generated by placing four loudspeakers facing
the corners of the laboratory playing back uncorrelated multi-
talker noise. It should be noted that although this background
noise was not perfectly diffuse, its MSC was rather similar to
the MSC of a diffuse noise field. The speech and the noise sig-
nals were recorded separately such that we were able to mix
them at different input SNRs (iSNRs) afterward. The consid-
ered iSNRs are iSNR ∈ {0 dB, 5 dB, . . . , 20 dB}.

The signals are processed using a weighted overlap-add
framework with a frame size of 512 samples and an overlap
of 50% at a sampling frequency fs = 16 kHz. The first micro-
phone of each hearing aid is arbitrarily selected as the reference
microphone. The DOA of the speech source is estimated us-
ing the binaural DOA estimator in [15]. It should be noted that
the DOA estimate obtained in all considered reverberant and
noisy scenarios is highly accurate. Using the estimated DOA,
the RETF vector aL,R(l) is computed from anechoic ATFs mea-
sured on the same dummy head [21]. The diffuse coherence
matrix Γ is calculated using spatially averaged auto- and cross-
correlations of the anechoic ATFs measured for angles rang-
ing between −180◦ to 175◦. To compute the parameter η(l)
for the MVDR-N beamformer, the desired interference output
MSC is defined based on the frequency-dependent values pro-
posed in [17], which are psychoacoustically motivated [22] and
do not alter the listener’s impression of a diffuse sound field.
The PSD matrices Φy(l) and Φũ(l) are estimated using recur-
sive averaging with a time constant of 40 ms. The minimum
gain of the Wiener postfilter G(l) is −20 dB.

The dereverberation and noise reduction performance is
evaluated in terms of the improvement in PESQ (∆PESQ) [23]
and frequency-weighted segmental SNR (∆fSSNR) [24] be-
tween the output signal and the reference microphone signal
for each hearing aid. The PESQ and fSSNR measures are intru-
sive measures comparing the signal being evaluated to a desired
signal. The desired signal for each hearing aid is generated by
convolving the clean speech signal with the measured anechoic
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Figure 1: MSC at the input and output of the MVDR and MVDR-
N beamformers.

ATFs corresponding to the true DOAs. The clean speech sig-
nal for the moving speaker scenario is assumed to be the sig-
nal recorded with a close-talk microphone. The ∆PESQ and
∆fSSNR presented in the following are average improvements
between the left and right hearing aids.

The postfilters in (17) and (18) are computed using the
blocking matrix-based and eigenvalue decomposition-based
diffuse PSD estimators. Two alternative estimates will be in-
vestigated for the blocking matrix-based estimator, i.e., Φ̂BM

d,2(l)
denoting the PSD estimate obtained using only the reference
microphones on the left and right hearing aids (corresponding
to the dual-channel PSD estimator in [15]) and Φ̂BM

d,4(l) denot-
ing the PSD estimate obtained using all 4 microphones (corre-
sponding to the maximum likelihood PSD estimator in [6]).

5.2. MSC preservation

Since the common Wiener postfilter does not change the bin-
aural cues, to evaluate the interference MSC preservation per-
formance of the considered techniques the MSC is computed at
the input and output of the MVDR and MVDR-N beamformers
using (9), (10), and (11). Fig. 1 presents the obtained MSC val-
ues. Since the interference PSD matrix is modeled by a scaled
diffuse coherence matrix, the input MSC is time-invariant and
equal to the MSC of a diffuse sound field. Furthermore, the
MSC at the output of the MVDR and MVDR-N beamformers
is also time-invariant, with the MVDR beamformer always dis-
torting the output MSC and the MVDR-N beamformer always
yielding the desired user-defined output MSC. Note that since
the late reverberation and the noise are not perfectly diffuse, the
interference PSD matrix is not equal to a scaled diffuse coher-
ence matrix in practice. Computing the MSC directly from the
signals would yield different results from the ones presented in
Fig. 1. However, the presented MSC values do illustrate that in
all simulations, the MVDR beamformer distorts the cues of the
residual interference whereas the MVDR-N beamformer better
preserves them.

5.3. Dereverberation performance for a stationary speaker

In this section the dereverberation performance is investigated
for several stationary speaker scenarios with different rever-
beration times and speaker positions. The presented ∆PESQ
and ∆fSSNR are averaged between the considered speaker po-
sitions. Fig. 2(a) presents the average ∆PESQ and ∆fSSNR
obtained using the MVDR beamformer and a Wiener postfilter
with different diffuse PSD estimators. It can be observed that
in terms of ∆PESQ, using any diffuse PSD estimator yields a
similar improvement, with Φ̂EVD

d,λ1
resulting in a slightly higher

∆PESQ than other PSD estimators. In terms of ∆fSSNR, it can
be observed that the eigenvalue decomposition-based estimators
yield a larger improvement than the blocking matrix-based es-
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Figure 2: Dereverberation performance for a stationary
speaker using a beamformer and a Wiener postfilter: (a) MVDR
and (b) MVDR-N.

timators, with Φ̂EVD
d,λ1

resulting in the best performance. In addi-
tion, in terms of both performance measures it appears that the
performance obtained using Φ̂BM

d,2 and Φ̂BM
d,4 is very similar, sug-

gesting that increasing the number of microphones in the block-
ing matrix-based framework does not increase the diffuse PSD
estimation accuracy. Fig. 2(b) presents the average ∆PESQ
and ∆fSSNR obtained using the MVDR-N beamformer and a
Wiener postfilter with different diffuse PSD estimators. Overall
it can be observed that the performance improvement obtained
for all considered reverberation times and diffuse PSD estima-
tors is smaller than in Fig. 2(a). This is to be expected, since
the MVDR-N beamformer also (partly) preserves the MSC of
the residual interference component (cf. Fig. 1). In terms of
both performance measures, it can be observed that the eigen-
value decomposition-based estimators yield a larger improve-
ment than the blocking matrix-based estimators, with Φ̂EVD

d,λ1
re-

sulting in the best performance. In addition, similarly to before,
the performance obtained using Φ̂BM

d,2 and Φ̂BM
d,4 is very similar

in terms of both performance measures.

5.4. Dereverberation and noise reduction performance for
a stationary speaker

In this section the dereverberation and noise reduction perfor-
mance is investigated for several stationary speaker scenarios
with different iSNRs and speaker positions. The considered
reverberation time is T60 ≈ 1 s. The presented ∆PESQ and
∆fSSNR are averaged between the considered speaker posi-
tions. Fig. 3(a) presents the average ∆PESQ and ∆fSSNR
obtained using the MVDR beamformer and a Wiener postfil-
ter with different diffuse PSD estimators. It can be observed
that in terms of both performance measures, the eigenvalue
decomposition-based estimators yield a larger improvement
than the blocking matrix-based estimators, with Φ̂EVD

d,λ1
resulting

in the best ∆PESQ and Φ̂EVD
d,λ2

resulting in the best ∆fSSNR for
low iSNRs. In addition, it can be observed that Φ̂BM

d,2 and Φ̂BM
d,4

yield a very similar performance in terms of both performance
measures. Fig. 3(b) presents the average ∆PESQ and ∆fSSNR
obtained using the MVDR-N beamformer and a Wiener postfil-
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Figure 3: Dereverberation and noise reduction performance for
a stationary speaker using a beamformer and a Wiener postfil-
ter: (a) MVDR and (b) MVDR-N (T60 ≈ 1 s).

ter with different diffuse PSD estimators. Overall it can be ob-
served that as expected, the performance improvement obtained
for all considered iSNRs and diffuse PSD estimators is lower
than in Fig. 3(a). Furthermore, the eigenvalue decomposition-
based estimators yield a larger improvement than the block-
ing matrix-based estimators in terms of both performance mea-
sures, with Φ̂EVD

d,λ1
resulting in the best ∆PESQ and Φ̂EVD

d,λ2
result-

ing in the best ∆fSSNR for low iSNRs. Whereas larger differ-
ences can be observed in terms of ∆PESQ between the blocking
matrix-based and eigenvalue decomposition-based estimators,
the obtained ∆fSSNR for all PSD estimators are rather similar.
In addition, similarly to before, the performance obtained using
Φ̂BM

d,2 and Φ̂BM
d,4 is very similar.

5.5. Dereverberation and noise reduction performance for
a moving speaker

In this section the dereverberation and noise reduction per-
formance is investigated for a moving speaker scenario with
T60 ≈ 1 s and iSNR = 10 dB. Since both ∆PESQ and ∆fSSNR
show very similar patterns, Table 1 presents only the ∆fSSNR
obtained using the MVDR and MVDR-N beamformers and a
Wiener postfilter. It can be observed that using the eigenvalue
decomposition-based estimate Φ̂EVD

d,λ2
results in the best perfor-

mance. However, the performance obtained using the other con-
sidered diffuse PSD estimators is also comparable. In addition,
it can be observed that as expected, the improvement obtained
for all diffuse PSD estimators when using the MVDR-N beam-
former is lower than when using the MVDR beamformer. How-
ever, the performance loss is rather insignificant, particularly
when using the eigenvalue decomposition-based estimators.

In summary, the simulation results presented in this paper
show the applicability of diffuse PSD estimators for binaural
dereverberation and noise reduction based on beamforming and
spectral filtering. Although all PSD estimators yield a high per-
formance, the eigenvalue decomposition-based estimators re-
sult in the best performance for all considered techniques and
scenarios. It should be noted that although the considered PSD
estimators are based on a diffuse sound field model, the late
reverberation and background noise considered in these simu-
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Table 1: Dereverberation and noise reduction performance in
terms of ∆fSSNR using an MVDR and MVDR-N beamformer
and a Wiener postfilter for a moving speaker (T60 ≈ 1 s, iSNR
= 10 dB).

Φ̂BM
d,2 Φ̂BM

d,4 Φ̂EVD
d,λ1

Φ̂EVD
d,λ2

MVDR 7.42 7.55 6.78 7.86
MVDR-N 6.83 6.89 6.66 7.63

lations were not perfectly diffuse, confirming the applicability
of the considered estimators in realistic acoustic environments.
Informal listening tests suggest that blocking matrix-based es-
timators yield a larger interference suppression while caus-
ing more signal distortions, whereas eigenvalue decomposition-
based estimators yield a smaller interference suppression while
introducing less signal distortions. In the future, formal listen-
ing tests should be conducted to truly assess the quality of these
different late reverberation PSD estimators for binaural derever-
beration and noise reduction.

6. Conclusion
In this paper we investigated the dereverberation and noise
reduction performance of the binaural MVDR and MVDR-N
beamformers followed by a Wiener postfilter when using block-
ing matrix-based and eigenvalue decomposition-based diffuse
PSD estimators. A least-squares generalization of dual-channel
blocking matrix-based estimators to the multi-channel case was
also presented, yielding the same PSD estimate as a recently
proposed multi-channel maximum likelihood estimator. Simu-
lations results show that independently of the technique used,
the eigenvalue decomposition-based PSD estimators yield the
best performance. Furthermore, it is shown that increasing
the number of microphones within the blocking matrix-based
framework does not increase the PSD estimation accuracy.
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Abstract
Understanding desired speech in noisy environments is one of
the important issues for hearing aid systems, which require
a strong real-time property. Recently, the authors have pro-
posed a low-latency algorithm for real-time blind source sepa-
ration (BSS) based on online auxiliary-function-based indepen-
dent vector analysis (AuxIVA) by the truncation of non-causal
components of time-domain demixing impulse responses, and
we evaluated the separation performance using omnidirectional
binaural microphones. On the other hand, directional micro-
phones have been widely used for hearing aids to improve the
signal-to-noise ratio. In this paper, the effects of the truncation
of demixing impulse responses is investigated when using the
proposed algorithm with binaural directional microphones. By
experimental evaluation using a head and torso simulator in a
real environment, the performance of the proposed algorithm
with directional microphones in the case of 10 ms latency is
9.0 dB in terms of the signal-to-interference ratio (SIR), which
is only a 2.2 dB performance loss from the case of 128 ms la-
tency. Moreover, the performance with directional microphones
is about 1.0 dB better than that with omnidirectional micro-
phones.
Index Terms: hearing aids, directional microphone, blind
source separation, independent vector analysis, low latency

1. Introduction
Hearing-impaired people have difficulties communicating with
others even if they wear hearing aids, especially in a noisy envi-
ronment such as a party venue or a crowded restaurant. Improv-
ing speech communication in such difficult situations is one of
the most challenging issues to be solved for hearing aids. As
a technique for solving these problems, blind source separa-
tion (BSS) may be applicable [1, 2, 3]. BSS is a signal pro-
cessing method that can extract a desired sound source from a
mixture by using multiple microphones without requiring in-
formation on the source signals. In the frequency-domain ap-
proach for convolutive BSS, independent vector analysis (IVA)
has been proposed as a technique that does not require the solu-
tion of a permutation ambiguity problem [4, 5, 6]. Furthermore,
auxiliary-function-based IVA (AuxIVA) has been proposed as
a state-of-the-art approach with rapid convergence and a low
calculation cost [7, 8, 9].

To apply BSS as an application of binaural hearing aids,
which are real-time systems, it is important to reduce the latency
from the input to the output of the system [10, 11]. In addition
to computational complexity, an algorithm may require an in-
herent delay, which is referred to as an algorithmic delay. In the
case of frequency-domain BSS, a delay of at least one frame
length is necessary for frame analysis [12]. Although several
real-time implementations of IVA have been proposed [13, 14],

this delay is unavoidable. Such a large delay causes various
problems in a hearing aid system such as difficulty in speak-
ing owing to the delayed auditory feedback effect or a sense of
discomfort due to the loss of lip synchronization [15].

Recently, the authors have proposed a low-latency algo-
rithm for real-time BSS based on online AuxIVA for hearing
aids [16]. This proposed algorithm can significantly shorten
the algorithmic delay by the time-domain implementation of
demixing matrices as FIR filters and the truncation of part
of their non-causal components. Generally, the truncation of
the non-causal components should degrade the separation per-
formance. However, if all the non-causal components of the
demixing impulse response are originally zero, these compo-
nents can be truncated without performance degradation. In our
previous work [16], we confirmed that the proposed system with
an algorithmic delay of within 10 ms worked with little perfor-
mance degradation by experimental evaluation using binaural
behind-the-ear (BTE)-type hearing aids consisting of omnidi-
rectional microphones.

However, bilateral directional microphones have been
widely used in actual hearing aids to improve the signal-to-noise
ratio of front speech signals in a noisy background [17]. Thus,
in this paper, the separation performance of binaural BSS based
on the low-latency online AuxIVA algorithm with directional
microphones was investigated as a more practical verification.

2. Low-latency real-time BSS
2.1. Overview of online AuxIVA

We assume that K sources are observed by K microphones and
that their short-time Fourier transform (STFT) representations
are known. Let x(ω, τ) = [x1(ω, τ) · · · xK(ω, τ)]t be the
vector representations of the observation signal in the (ω, τ)th
time-frequency bin, where t denotes the vector transpose. In
the frequency domain, the sources are estimated by the follow-
ing linear demixing process:

y(ω, τ) = W (ω; τ)x(ω, τ), (1)

where W (ω; τ) = (w1(ω; τ) · · · wK(ω; τ))h is a demixing
matrix, h denotes the Hermitian transpose, and y(ω, τ) =
[y1(ω, τ) · · · yK(ω, τ)]t represents the estimated sources.

An online AuxIVA algorithm is an effective means of es-
timating the demixing matrices W (ω; τ) in the (ω, τ)th time-
frequency bin under dynamic conditions [14]. The algorithm
consists of alternate update rules, which update the weighted
covariance and the demixing matrix. In this paper, we focus on
the case of K = 2 for application to hearing aids.
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Figure 1: Signal block diagram of low-latency real-time online
independent vector analysis.
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Figure 2: Time-domain demixing impulse responses. Upper:
original response w̃kl(n; τ). Lower: shifted and truncated re-
sponse w̄kl(n; τ).

2.2. Realization as quasi-causal FIR filter

Figure 1 shows a signal block diagram of a low-latency version
of the online AuxIVA algorithm [16]. A means of shortening
the delay is to form two paths, one for updating the demix-
ing matrices in the frequency domain and the other for sepa-
rating the sources using FIR filters in the time domain. After
applying back-projection [18], the frequency-domain demixing
matrix W (ω; τ) is converted to coefficients of multiple time-
domain FIR filters w̃kl(n; τ) using the inverse discrete Fourier
transform. This structure can shorten the algorithmic delay to
half of the frame length (Nω/2 samples). To further shorten the
algorithmic delay, the coefficients of only Nd non-causal com-
ponents are shifted and the other components are truncated as
shown in Fig. 2. After that, the algorithmic delay of the system
becomes only Nd samples.

If all the non-causal components of w̃kl(τ) are originally
zero, the algorithmic delay of the system can theoretically be
zero without performance degradation. For the simple model
consisting of two sound sources and two observations shown in
Fig. 3, a theoretical sufficient condition for the ideal separation
filters to be causal is obtained as the following inequality [16]:

[log a(θ2) − log a(θ1)] · [τ(θ2) − τ(θ1)] < 0, (2)

where a(θk) and τ(θk) are respectively the amplitude ratio and
the time difference of the second channel relative to the first

Observation

Source

�

�

�

�

�

�

�

�

�

�

�

�

Source

Observation

Separation

Figure 3: Simple model consisting of two sound sources and two
observations.
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Figure 4: Locations of the microphones for BTE-type hearing
aid with KEMAR dummy head.

channel for source k with direction θk.

3. Directional microphone in hearing aids
Generally, the directivity of the microphone in a hearing aid
is produced by a pair of omnidirectional microphone signals.
Fig. 4 shows the locations of omnidirectional microphones in
a BTE-type hearing aid mounted on an auricle of a KEMAR
dummy head. The separation between the front and rear omni-
directional microphones was 1.08 cm in this case. Fig. 5 shows
a signal block diagram of the directional microphone as a spa-
tial signal-processing system. The output of the directional mi-
crophone system can be expressed in terms of the microphone
separation d, the angle of arrival θ, the rear microphone time
delay τr , and the gain b. Then, the directional microphone re-
sponse in the frequency domain Xd(ω, θ) when b = 1 can be
approximated by the following equation [17]:

|Xd(ω, θ)| ≈ ω

(
d

c
cos θ + τr

)
, (3)
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Figure 5: Block diagram of directional microphone as a spatial
signal-processing system.
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where c denotes the sound velocity. Fig. 6 shows microphone
directional patterns when τr = d/c. From the figure, it is found
that the sensitivity of the response at lower frequencies is atten-
uated by 6 dB per octave. These spatial directional responses
may affect the extent to which Eq. (2) is satisfied. Therefore,
the purpose of this paper is to experimentally evaluate how the
proposed low-latency BSS works in the binaural directional sys-
tem.

4. Evaluation
4.1. Setup

To evaluate the performance of the low-latency online IVA with
binaural directional microphones for hearing aids, a PC sim-
ulation was carried out using real mixtures of two speeches
recorded by four microphones in binaural BTE-type hearing
aids with a head and torso simulator (G.R.A.S.: KEMAR type
45BB) in a meeting room. Fig. 7 shows the setup of the loud-
speakers and microphones in the evaluation. Two omnidirec-
tional electret condenser microphones (front and rear) were in-
stalled in one BTE-type hearing aid. The hearing aids were at-
tached to each ear of the head and torso simulator. The direction
of one of the two sources was fixed at 0◦ and that of the other
source was varied from 30◦ to 180◦ in steps of 30◦. We selected
ten speech sources for each direction from the RWCP Japanese
News Speech Corpus [19]. The other experimental conditions
are summarized in Table 1.

Table 1: Experimental conditions

microphone spacing (interaural) 18.0 cm
microphone distance (front and rear) 1.08 cm
reverberation time 650 ms at 500 Hz
signal length 30 s × 10
sampling frequency 16 kHz
frame length 4096
frame shift 1024
window function Hanning
forgetting factor 0.98

For comparison, we used two different latencies, where the
numbers of remaining non-causal components Nd were 160 and
2048 samples, corresponding to algorithmic delays of 10 and
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Figure 7: Setup of loudspeakers and microphones in the evalu-
ation.

128 ms, respectively. The experiments on the recorded mix-
tures were performed using MATLAB R2016a on a laptop PC
with an Intel Core i7-3770 3.40 GHz processor. The perfor-
mance was evaluated by the average signal-to-interference ratio
(SIR) over all trials with the exception of the first three seconds
on each trial, which is defined as the ratio of the signal power
of the desired speaker to the signal power from the interfering
speaker. The SIR was calculated by bss eval images.m in the
BSS toolbox [20].

4.2. Method

In this experiment, the separated signals were obtained by ap-
plying back-projection to the front channel in the omnidirec-
tional case and to the directional channel (the output of Fig. 5).
To compare them fairly, it is necessary to compensate the dif-

100 200 500 1000 2000 5000 8000

Frequency (Hz)

-20

-10

0

10

20

A
m

p
lit

u
d

e
 (

d
B

)

Figure 8: Example of amplitude response of compensation filter
ck(ω).
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ference in the sensitivity characteristic associated with the di-
rectivity. As post-processing for the evaluation, we derive a
compensation filter by minimizing the following cost function:

J(C(ω)) =
∑

τ

∣∣∣r(ω, τ) − CH(ω)Y (ω, τ)
∣∣∣
2

, (4)

where r(ω, τ) is the STFT representation of the front micro-

phone signal xf (n), Y (ω, τ) =

[
y1(ω, τ)
y2(ω, τ)

]
is a vector com-

prising of the STFTs of the separated signals yk(ω, τ), and

C(ω) =

[
c1(ω)
c2(ω)

]
is a vector of the compensation filter ck(ω).

By differentiating Eq. (4) with respect to C(ω) and setting the
equation to 0, the compensation filter C(ω) can be calculated
as

[
c1(ω)
c2(ω)

]
=




∑

τ

|y1(ω, τ)|2
∑

τ

y1(ω, τ)y∗
2(ω, τ)

∑

τ

y∗
1(ω, τ)y2(ω, τ)

∑

τ

|y2(ω, τ)|2




−1

·




∑

τ

r∗(ω, τ)y1(ω, τ)

∑

τ

r∗(ω, τ)y2(ω, τ)


 .

(5)

Fig. 8 shows an example of the amplitude response of the com-
pensation filter ck(ω) for a separated signal with directivity. It
was found that the amplitude response was compensated by 6
dB per octave slope.

4.3. Results

Figure 9 shows the separation performance with omnidirec-
tional microphones for the low-latency online AuxIVA algo-
rithm with algorithmic delays of 128 and 10 ms. The bars and
the error bars indicated the averaged SIR and the standard de-
viation on each ten trials, respectively. On the horizontal axis,
A(AB) denotes source A in a mixture of source A and source B.
The average SIR with the algorithmic delay of 10 ms is 8.0 dB,
which is 1.9 dB less than that for the delay of 128 ms. In par-
ticular, the SIR tends to degrade toward the front-back direction
such as at 30◦, 150◦, and 180◦.

On the other hand, Fig. 10 shows the separation perfor-
mance with directional microphones. The average SIR with the
algorithmic delay of 10 ms is 9.0 dB, which is 2.2 dB less than
that for the delay of 128 ms. The resultant SIRs with the direc-
tional microphones show better separation performance, which
was on average 1.0 dB greater than that with omnidirectional
microphones. In particular, the improvement of the SIR in-
creases toward the front-back direction.

5. Conclusion
In this paper, we evaluated the separation performance of low-
latency online AuxIVA with directional microphones for bin-
aural hearing aids. When the directivity was processed from
an adjacent pair of omnidirectional microphones, the sensitiv-
ity of the response at lower frequencies was attenuated by 6 dB
per octave compared with the omnidirectional microphones. To
compare them fairly, the difference in the sensitivity character-
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istics was compensated by post-processing. From the evaluation
results, the performance of the proposed algorithm with direc-
tional microphones in the case of 10 ms latency was 9.0 dB
in terms of the SIR, which is only a 2.2 dB performance loss
from the case of 128 ms latency. Moreover, the average SIR
with directional microphones was about 1.0 dB better than that
with omnidirectional microphones. Future work will focus on
listening tests to verify the proposed system.
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Abstract 

What information do we need to know about listeners to 
predict their performance on a speech intelligibility task and 
how well can we predict intelligibility anyway? This paper 
performs a meta-analysis on two speech intelligibility studies 
of hearing-impaired listeners in which we evaluate different 
approaches to building a predictive model of intelligibility. 
The model has two components: a cochlear loss term based on 
a number of psychoacoustic measures of hearing, and a supra-
cochlear loss term to explain residual performance variation. 
These models are trained using a method of cross-validation to 
determine how well they might perform on new listeners and 
new tasks. We found that cochlear loss could only explain 
40% of the variability in performance across hearing-impaired 
listeners, while the supra-cochlear loss can account for a 
further 20-40% depending on the task. The combined cochlear 
and supra-cochlear loss terms allow good estimates of 
intelligibility scores in the data, with speech reception 
thresholds on a novel listening task being predictable to within 
1dB on average. 

Index Terms: hearing impairment, speech intelligibility, 
psychoacoustics, metrics. 

1. Introduction 

The availability of increasingly powerful computational 
resources in miniaturized form allows for more advanced 
signal processing algorithms to be applied within hearing aids. 
These techniques hold promise for improved speech 
intelligibility for hearing impaired (HI) users in everyday 
noisy and reverberant environments. 

However, the development of some advanced signal 
processing algorithm is not enough. It is also necessary to 
ensure that processing adapts to the requirements of the 
listener and to the requirements of the listening situation [1]. 
For a given impaired listener, the advanced aid needs to 
choose between the relative benefits of equalization, 
compression, noise reduction, dereverberation, beam-forming 
or speech enhancement for every listening situation. The 
challenge is not just to find good signal processing 
approaches, but to understand how they benefit the listener to 
ensure they are optimized for the listener and the listening 
environment.  

In previous work we have investigated the utility of 
speech intelligibility metrics for predicting the impact of 
speech signal processing on intelligibility for normally-
hearing (NH) listeners [2]. We evaluated predictions from 
intrusive signal metrics of intelligibility against the actual 
performance of listeners. We showed that metrics like STOI 
[3] and NCM+ [4] gave fair predictions of the likely speech 

intelligibility to a listener from analysis of the differences 
between the clean signal and the processed noisy/reverberant 
signal. Typically intelligibility could be predicted within 2dB 
SNR [2]. 

For these metrics to be useful for finding the best signal 
processing approaches in hearing aids, they need to be 
developed in two directions: firstly they need to be made non-
intrusive, that is capable of working from the noisy signal 
alone, and secondly they need to take into account the impact 
of hearing impairment. Well-established means for converting 
intrusive metrics to non-intrusive use statistical learning 
methods applied to large databases of speech materials rated 
by the intrusive metric [5]. How best to modify these metrics 
to make predictions for HI listeners, however, is still an active 
area of research. 

A typical approach to take hearing loss into account within 
intelligibility metrics is to incorporate information about the 
listener into the front-end signal processing: for example a 
front-end filterbank might be modified to accommodate 
degradations in frequency sensitivity (auditory thresholds), 
frequency selectivity (auditory filter bandwidths) and dynamic 
range (recruitment) [6]. While this approach seems sensible, it 
relies on the assumption that the difference between NH and 
HI listeners is well predicted by characteristics of their hearing 
loss. In turns out that this is not the whole story. When a group 
of HI listeners are assessed (as we show later in this paper) 
there is considerable residual variation in performance 
compared to NH listeners even after taking their hearing loss 
into account. There is an echo of the Anna Karenina principle: 
normally hearing listeners are all alike; every hearing impaired 
listener is  hearing impaired in their own way.  

A number of explanations are proposed for why HI 
listeners are more variable than NH listeners. It could be to do 
with correlations between hearing loss and cognitive decline 
[7], or that imperfect auditory representations require more 
cognitive effort to process which tests the ability of the 
listener to recruit additional processing capacity or working 
memory [8]. Or it could be that some of the phonological fine 
tuning used by NH listeners to discriminate phonemes is 
degraded to different degrees in different listeners. 

HI listener variation that is not predictable from 
characteristics of their hearing loss is a problem for speech 
intelligibility metrics, since manipulation of the front-end of 
the metric may not be enough. For the design of metrics to 
predict the benefit of speech enhancement to HI listeners this 
is a real problem since the accuracy of a metric based only on 
hearing loss could be worse than the likely differences 
between processing approaches (e.g. approaches may only 
vary by 1dB in effective SNR but estimated intelligibility for a 
listener might vary by 2dB). 
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In this paper we study the variability of speech 
intelligibility performance by HI listeners in terms of two loss 
functions. The first relates to those aspects related to 
psychoacoustic measurements of their hearing loss. We call 
this their cochlear loss. The second relates to everything else, 
we call this their supra-cochlear loss. The paper then has three 
goals: 

a) What proportion of the variability of HI listener 
performance on speech intelligibility tasks is predictable 
from their cochlear loss? 

b) What proportion of the variability of an HI listener on a 
new intelligibility task is predictable from an estimate of 
their supra-cochlear loss obtained from another 
intelligibility task? 

c) To what degree is supra-cochlear loss independent of the 
nature of the listening task? 

Our approach is a meta-analysis of two existing data sets in 
which both psychoacoustic measures and speech intelligibility 
scores are available for a group of HI listeners. We assume 
that the psychoacoustic measures reflect cochlear processing. 
We build the best predictive models of performance from 
these psychoacoustics and interpret the remaining 
performance variation on some task as supra-cochlear loss. 
We then explore how estimates of listeners' supra-cochlear 
losses vary with intelligibility task. 

The structure of the paper is as follows: in section 2 we 
shortly describe the contents of the data sets in terms of the 
speech intelligibility scores and the psychoacoustic descriptors 
available in each. We refer to the original papers for details.   
In section 3 we describe the modelling approach and the 
performance measures used. In section 4 we present the results 
of the meta-analysis and in section 5 discuss their 
implications. 

2. Data sets 

2.1. Bethesda Data Set 

The Bethesda data set was collected by Summers et al [9] at 
the Walter Reed National Military Medical Center, Bethesda, 
MD. The listeners on the test comprised 10 normally-hearing 
and 18 hearing-impaired subjects. It includes the following 
psychophysical measurements (code in brackets). 
  Pure-tone hearing thresholds at 250, 500, 1000, 1500, 

2000, 3000, 4000, 6000 & 8000Hz. (H) 
 Degree of peripheral amplitude compression at 500, 

1000, 2000 & 4000Hz. (C) 
 Auditory filter bandwidths at 500, 1000, 2000 & 4000Hz 

measured at both 70 and 80 dB SPL. (B) 
 Frequency modulation detection thresholds measured at 

500, 1000, 2000 & 4000Hz. (F) 
The intelligibility of speech-in-noise to each listener was 
measured using IEEE sentences with both speech-shaped 
noise and amplitude modulated speech-shaped noise at signal-
to-noise ratios (SNRs) of -6, -3, 0 and +3 dB. The speech, 
presented at 92 dB SPL for all listeners, was not equalized to 
match auditory thresholds. 

For subsequent analysis the speech test scores for each 
listener were converted to Speech Reception Thresholds 
(SRT). The % scores were first converted to log-odds ratios 
and then linear regression was used to find the SNR value for 
the listener which gave a log-odds of 0 (i.e. 50%). In addition 
all frequency measurements were converted to log Hertz 
before modelling. 

Since our analysis is focused on the HI listeners, the data 
points of the NH listeners were combined into one average 
listener. 

2.2. Salamanca Data Set 

The Salamanca data set was collected by Johannesen et al [10] 
at the Universidad de Salamanca, Spain. It consists of test 
scores on 68 hearing-impaired listeners. The following 
measurements were made of each listener’s hearing ability 
(code in brackets): 
 Pure-tone hearing thresholds at 500, 1000, 2000, 4000 & 

6000Hz (H) 
 Estimate of cochlear mechanical gain loss (also referred 

to as outer-hair cell loss, OHC) expressed in decibels 
(dB). (O) 

 Basilar-membrane compression exponent (BMCE). It 
was defined as the slope (in dB/dB) of an inferred 
cochlear input/output curve over its compressive 
segment. (C) 

 Frequency modulation detection thresholds (FMDTs), 
defined as the minimum detectable excursion in 
frequency for a pure tone carrier at 1500Hz. (F) 

Speech intelligibility was assessed for speech-shaped noise 
(SSN) and a time-reversed two-talker masker (R2TM) using 
HINT sentences. Performance was recorded in terms of SRT 
score. Speech materials were presented with linear, frequency-
specific amplification to compensate for listeners' audiometric 
losses. 

3. Method 

Our goal is to model the effects of cochlear and supra-cochlear 
deficits on speech intelligibility performance as measured in 
terms of speech reception threshold. To build a model of 
cochlear loss we perform a regression on the psychoacoustic 
measurements of each listener to predict their SRT score for 
each listening task. Since we do not know the form of that 
function we use support-vector regression (SVR) [11] that 
makes no assumptions about the form of the function other 
than listeners with similar psychoacoustics are likely to have 
similar scores. SVR determines a subset of the data set that 
can be used as examples (support vectors) against which a 
new listener can be compared to best predict their score. The 
final score is then just the linear combination of support vector 
scores weighted by their distance to the new vector. Since any 
given listener may be chosen to be one of the support vectors, 
we must model the data set using cross-validation, where each 
listener is left out in turn and a predicted score is made from a 
model trained from the remaining listeners. To build the 
cochlear loss model, the psychoacoustic measures were 
divided into four sets as coded in section 2, and each feature 
set was tested in isolation and in combination with all other 
feature sets. Features are normalised before modelling. A grid-
search is used to find the best SVR hyper-parameters, and 
final predictions are computed from 10 modelling runs. 

Once we have obtained a predicted score for each listener 
we can compare the prediction against the actual score and 
determine two performance measures: R2, the proportion of 
variance in scores explained by the prediction, and mean 
absolute error (MAE) of prediction, which answers the 
question how far away on average is the prediction from the 
correct answer. 

The difference between actual and predicted scores for a 
listener was used as an estimate of their supra-cochlear loss. 
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To explore the size and variability of the supra-cochlea loss 
term, we can calculate this for each one of the listening tasks 
in the data sets, and evaluate it on the other. We compare 
actual scores and the prediction from the estimated cochlear 
loss on each task together with the estimated supra-cochlear 
loss from the other task in terms of R2 and MAE. 

Finally we can calculate how much the estimate of the 
supra-cochlear loss varies across the two listening tasks to 
explore the extent to which the supra-cochlear loss is 
dependent upon the nature of the task. 

4. Results 

4.1. Prediction of Cochlear Loss 

Table 1 shows the MAE of prediction of the SRTs for speech-
shaped noise and modulated speech-shaped noise for hearing 
impaired listeners in the Bethesda data set for each 
combination of psychoacoustic features. Table 2 shows the 
MAE of prediction of the SRTs for speech-shaped noise 
masker and for a reversed two-talker masker for hearing 
impaired listeners in the Salamanca data set. 

Table 1. SRT Prediction from Psychoacoustics for 
Bethesda data in MAE (dB) 

Group Features SSN Modulated 
SSN 

Baseline None 1.982 3.215 

Single H 1.462 2.121 

Single C 1.851 2.871 

Single B 1.848 2.957 

Single F 1.539 2.524 

Double H+C 1.493 2.129 

Double H+B 1.477 2.027 

Double H+F 1.434 2.192 

Double C+B 1.903 3.037 

Double C+F 1.664 2.718 

Double B+F 1.717 2.507 

Triple H+C+B 1.476 2.135 

Triple H+C+F 1.505 2.251 

Triple H+B+F 1.486 2.085 

Triple C+B+F 1.736 2.628 

All H+C+B+F 1.557 2.174 

 

Tables 1 and 2 show that incorporation of psychoacoustic 
features into the model can improve the prediction of speech 
intelligibility scores over a baseline prediction based on the 
mean of the other listeners. For the Bethesda data set, the 
MAE reduces from 1.982 to 1.434dB for SSN, and from 3.215 
to 2.027 for Modulated SSN. The reduction on the Salamanca 
data set is much smaller, from 1.137 to 1.018dB for SSN, and 
from 1.244 to 1.006dB for reversed two-talker masker. 

The best feature set combinations were different for the 
different data sets and tasks; these are indicated in bold in the 
tables. The SRT predictions for the best performing models on 
the Bethesda data set are plotted in Figure 1. The SRT 
predictions for the best-performing models on the Salamanca 
data set are plotted in Figure 2. The proportion of variance 
explained by the best performing models is shown in the 
plots.. 
 

 

 

Table 2. SRT Prediction from Psychoacoustics for 
Salamanca data in MAE (dB) 

Group Features SSN R2TM 

Baseline None 1.137 1.244 

Single H 1.115 1.083 

Single O 1.129 1.155 

Single F 1.101 1.036 

Single C 1.022 1.219 

Double H+O 1.119 1.111 

Double H+F 1.061 1.010 

Double H+C 1.045 1.046 

Double O+F 1.085 1.060 

Double O+C 1.073 1.118 

Double F+C 1.018 1.090 

Triple H+O+F 1.092 1.034 

Triple H+O+C 1.049 1.035 

Triple H+F+C 1.040 1.009 

Triple O+F+C 1.060 1.031 

All H+O+F+C 1.041 1.006 

 

 

Figure 1. Prediction of SRT from best psychoacoustic 
features for Bethesda data set (left = SS noise, right = 

modulated SS noise) 

 

Figure 2. Prediction of SRT from best psychoacoustic 
features for Salamanca data set (left = SS Noise, right 

= reversed 2-talker masker) 

4.2. Prediction of Supra-Cochlear Loss 

The supra-cochlear loss term for each listener for each task is 
then calculated as the difference between the actual SRT and 
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the SRT predicted from the best feature set for the task. 
Figures 3 and 4 show the predicted SRT after inclusion of the 
supra-cochlear loss term. In each case the loss term is 
computed for the other task. In both data sets and for both 
tasks, the prediction error is reduced by the inclusion of the 
supra-cochlear loss, with the MAE reducing to about 1dB for 
the Bethesda data set and 0.8dB for the Salamanca data set. 

Figure 5 shows the correlation between the supra-cochlear 
loss terms across the two tasks for each of the two data sets. 
The graphs suggest that the supra-cochlear loss varies by 
around 1dB on average across the pair of tasks.  
 

 

Figure 3. SRT prediction after supra-cochlear loss 
included in Bethesda data set. Left: SSN score after 
MSN calibration, right: Mod SSN score after SSN 

calibration. 

 

 

Figure 4 . SRT Prediction after supra-cochlear loss 
included in Salamance data set. Left: SSN after R2TM 

calibration, right R2TM after SSN calibration. 

 

Figure 5. Comparison of supra-cochlear loss across 
listening tasks. Left Bethesda data set, right 

Salamanca data set. 

5. Discussion 

This paper has shown how SRT predictions for HI listeners 
may be significantly improved using an SVR model of 
cochlear loss based on the available psychoacoustic measures. 
Prediction accuracy was better in the Salamanca data set 
probably because the intelligibility scores were collected with 
equalization for listener thresholds and so were less variable to 
begin with. This equalization also explains the different 
importance given to features in the model, with thresholds 
being very important features for the Bethesda data set, while 
for the Salamanca data set, the choice of features made little 
difference in terms of MAE.  

Cochlear loss alone only explained at best 40% of the 
variability in test scores across HI listeners. Inclusion of a 
supra-cochlear loss term (calculated from the other task) into 
the model explains a further 40% of the variation for the 
Bethesda data set, and a further 20% for the Salamanca data 
set. The difference is explained by Figure 5, which shows that 
the two tasks in the Bethesda data set are more similar than 
those in the Salamanca data set.  

Taking both loss terms together we have shown that we 
can predict second test score performance from first test score 
performance to within 1dB MAE. This seems within the likely 
prediction error of a speech signal intelligibility metric. 

 The residual variability in prediction might come from 
different sources: (i) experimental error in the collection of the 
psychoacoustic measures or the intelligibility scores; (ii) the 
effects of cochlear loss on the task other than that explained by 
the particular set of psychoacoustic measurements available, 
or (iii) the task dependency of supra-cochlear loss caused by 
interactions between the task and cognitive deficits. This 
interaction might also have arisen if variation in cognition had 
impact on the collection of psychoacoustic measurements 
themselves.  

In the future, better modelling might arise from: (i) a 
wider range of psychoacoustic measures – although the 
evidence presented here suggests that such measures are 
highly correlated with one another; (ii) a wider range of 
intelligibility tests per listener to unpack the reasons why 
supra-cochlear loss is dependent on characteristics of the task; 
(iii) repeated testing of listeners to obtain estimates of 
measurement error. 

Overall the analysis presented here seems promising for 
the development of speech signal intelligibility metrics for 
hearing impaired listeners provided these include a supra-
cochlear calibration term for each listener. This might be 
estimated by incorporating a standardised speech intelligibility 
test alongside standard psychoacoustic tests in their clinical 
assessment. The study also makes clear that further work is 
required to understand the causes of variability in the 
intelligibility of speech to the hearing impaired. 
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Extended Abstract 

Improvements in sound processing technology have played a 

critical role in the advancement of cochlear implant (CI) and 

hearing-aid (HA) technology. Since the inception of CIs and 

HAs, investigators have relied on research tools and interfaces 

to conduct perceptual studies. Research interfaces commonly 

provided by the manufacturers either have limited 

functionalities or are not suitable for conducting a broad range 

of experiments. Portability, wearability, and ease of 

programmability limits existing research interfaces to 

benchtop/laboratory use only. Real-world, long-term subject 

evaluations are needed to assess true potential of novel sound 

processing strategies. 

Our center (CRSS-CILab) over past ten years has been 

involved in the development of portable research 

platforms/tools for speech and hearing research [1]. Our latest 

effort is to leverage computing capabilities of emerging 

smartphones and tablets for sound processing needs. The 

functional structure of the platform is shown in Fig. 1. The 

digital acoustic signal is sampled from Behind-the-Ear (BTE) 

units and transmitted to the computing platform via a USB-

serial port of a custom-developed interface board. The 

computing platform processes the acoustic signal through a 

sound coding strategy and generates a set of stimulation data. 

This data is sent back to the interface board where it is 

simultaneously delivered to the RF transmission coils (electric 

stimulation) and hearing aid transducers (acoustic stimulation). 

In case of electric stimulation, the data is first encoded (using 

the transmission protocols of the CI device) in the FPGA, 

before streaming to the implant (see Fig. 1).  

The platform can be used for both unilateral and “time-

synchronized” bilateral stimulation. Time-synchronized 

bilateral stimulation means that biphasic pulses and acoustic 

signal on both left and right ears arrive at the exact same time. 

In addition, the platform can be configured to provide both 

electric and acoustic stimulation (EAS) concurrently. Acoustic 

stimulation can be delivered to ipsilateral as well as 

contralateral ears, thereby giving 4 channels of time-

synchronized stimulation simultaneously in two modes. From 

operational stand-point, the platform can be used in both real-

time and bench-top modes. The real-time mode works similar 

to a clinical body-worn processor to conduct experiments in 

free field using the BTE microphone. The bench-top mode, on 

the other hand, can stream pre-processed stimuli (e.g., audio 

files) from a desktop PC in laboratory environment. The bench-

top mode can also be used to conduct psychoacoustics or 

psychophysics experiments.  

One of the unique and powerful capabilities of the platform 

is the ability to use it as a real-time speech processor in 

MATLAB environment. Researchers have access to real-time 

microphone signals, implement custom algorithms, and stream 

stimuli for subjective evaluation in real-time from MATLAB. 

Furthermore, by using smartphones/tablets, there is an 

additional flexibility to develop and run custom applications 

(Apps) that are tuned to specific experiments. The touch-screen 

capability and graphical controls on the smartphone provide an 

interactive user-interface for modifying processing parameters 

on the go and enable user input in real-time. 

The CCi-MOBILE platform was evaluated acutely with 

eight post-lingually deafened adult CI users. The assessment of 

speech recognition was accomplished with AzBio and IEEE 

sentences presented at different SNR levels as well as with 

CNC words/phonemes. Study participants were tested in free-

field, both with their clinical processor and CCi-MOBILE. The 

results from acute evaluation indicate that on all measures of 

test material, CCi-MOBILE platform (µ=59.86±16.02) was not 

statistically different from each individual’s clinical processors 

(µ=56.38±17.96). These results indicate that performance with 

the CCi-MOBILE is comparable to the clinical processor, and 

that it holds potential for conducting reliable speech 

assessments in future studies.  

The CCi-MOBILE is one-of-a-kind research platform, and 

is orders of magnitude more flexible and computationally 

powerful than existing commercially available processors. It 

will aid in bridging scientific research with commercial 

applications. The research platform is intended to be an open-

source contribution to the cochlear implant and hearing-aid 

field and will be distributed to the research community on a 

non-profit model. 
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Fig. 1. High-level description of the CCi-MOBILE research platform. 
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1. Extended abstract
Development and evaluation of new algorithms which aim to
improve speech intelligibility and sound perception quality for
cochlear implant (CI) users are an important research field. In
general, validation of signal processing strategies in CIs is based
on subjective evaluations [1]. Human testing is generally time
consuming and is subject to availability of sufficient number
of CI users to participate in research. In addition, it requires
specialized hardware to interface with implanted electronics as
well as clinical implementation of speech processing strategies.
Due to limited availability of hardware and software, not all
researchers have access to the required tools to assess validity
and effectiveness of their research ideas.

Validation of signal processing implementations of research
ideas does not necessarily requires human speech assessments.
Mathematical formulations can be used to characterize and
compute normalized metrics which can enable signal process-
ing engineers to compare their encoding schemes with stan-
dard implementations. Previous research in this domain, e.g.
by Yousefian and Loizou [2], aimed at developing metrics that
use the envelope of the processed and clean speech to estimate
speech intelligibility. These metrics can be used for comparing
strategies to a limited extend, as they are more suitable to eval-
uate robustness of noise reduction algorithms. Currently, there
are not any standard metrics available to compare the output of
different sound-processing strategies/implementations.

The goal of this study was to make a first step on the de-
velopment of an objective tool to compare implementations of
cochlear implant strategies. Such comparison may allow the
validation of new implementations of existing strategies. The
comparison between strategies is performed by the analysis of
their electrodograms for a fixed set of input audios, and user pa-
rameters (such as threshold and comfort levels, pulse rate and
shape). Two N -by-M matrices A and Aref represent, respec-
tively, the electrodogram of the strategy under test and the one
of the reference strategy. Here rows are related to the signal in
each one of the N electrodes and columns are related to the M
time frames of stimulation.

First, the euclidean distance, di, between the ith row of the
two matrices is calculated, resulting in a N -by-1 array d, ac-
cording to equation (1). ai,j is the element in row i and column
j of the matrix A.

di =

√√√√
M∑

j=1

(
ai,j − aref

i,j

)2 (1)

The sum of all elements of d leads to error associated with the
audio file f , EDf =

∑N
i=1 df,i and ED is the distribution of

errors associated with all the files as the metric to compare two
strategies.

In the present work, we have considered Advance Com-
bination Encode (ACE) strategy as an example to demonstrate
the effectiveness of the proposed approach. Three implemen-
tations of ACE strategy are compared: clinical implementa-
tion as outlined in Cochlear Corp.’s Nucleus Matlab Toolbox,
an open-source version developed at the University of Texas
at Dallas [3] and custom coded version developed at the Fed-
eral University of Santa Catarina [4], based on published data.
The above metric was computed for several acoustic inputs of
varying complexity and user parameters. These consisted of
tones with varying intensities, calibrated chirp signals, conso-
nants, vowels, and speech sentences. The output from these
stimuli were used to generate reference electrodogram matrices
with the Nucleus Matlab Toolbox (NMT).Student’s t-test was
used to compare error distributions of the two implementations,
EDUTD and EDUFSC , to test for equivalence.

It is noted here that different implementations may result
in distinct processing delays that may generate time misalign-
ment issues between the pulses on electrodograms. In order to
address this, a pre-processing for time alignment is performed.
Also, slight variations in channel gains may result in variations
in (timing and amplitude of) pulses across channels. The ap-
proach outlined in this paper could potentially allow the val-
idation of new implementations of existing strategies, before
performing any human testing. Future work will focus on quan-
tifying the error in terms of its perceptual significance (intelli-
gibility and quality), by means of subjective studies in order to
understand how this metric relates to human speech perception.
This may indicate possible adjustments on the metric, in order
to also allow the comparison between different strategies.
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1. Introduction
A hearing aid amplifies the input sound from a microphone in
conformity with the hearing threshold of a user; however, it si-
multaneously enhances undesired environmental sounds such as
the noise of an air conditioner or a car. According to MarkeTrak
V [1], such kinds of noise are often perceived by the hearing aid
user with a strong feeling of discomfort, and thereby, the user
perceives the continuous use of the hearing aid to be inconve-
nient.

Numerous algorithms have been proposed and imple-
mented for hearing aids as well as cell phones for the pur-
poses of speech enhancement, reduction of discomfort due to
noise [2, 3], and alleviation of listening effort [4]. However,
it is widely known today that speech intelligibility is not sig-
nificantly improved by using conventional algorithms, despite
the improvement in sound quality [5]. Considering that a hear-
ing aid is an effective communication device for the hearing-
impaired, the most important issue for users in their daily lives
is to improve the speech recognition rate during communica-
tion. Noise reduction algorithms based on spectral subtraction
estimate the spectrum of the noise component and then subtract
it from the observed signal spectrum; even hence, if the speech
spectrum is masked in the noise, it would result in a decrease in
the output signal or level of loudness. The degradation of output
level for certain frequency components might affect the speech
quality depending on the hearing level of the patients, because
the output sound level will be lower than the patients threshold
of hearing, though this degradation has a positive effect in terms
of reducing the annoyance of patients.

In this study, a noise reduction algorithm based on loud-
ness management, which eliminates unnecessary spectral sub-
traction, is proposed. The concept of our algorithm is that noise
components are preserved as much as possible by keeping loud-
ness level of speech signal for positive effect of speech recogni-
tion.

2. Proposed System
Figure 1 represents a block diagram of our proposed system.
Here, the observed signal x(t) is defined with speech signal s(t)
and noise n(t) as

x(t) = s(t) + n(t) (1)

where t denotes the time index. The above Eq.1 can be written
in the frequency domain as

X(ω) = S(ω) +N(ω), (2)

where ω denotes the angular frequency. The estimated speech
signal spectrum is calculated using estimated noise power [6]

|N ′(t, ω)|, as

|S′(t, ω)|2 = |X(t, ω)|2 − |N ′(t, ω)|2. (3)

For the calculation of partial loudness based on ISO 532B, the
observed and estimated speech signal spectra, |X(t, ω)|2 and
|S′(t, ω)|2, are transformed into one-third octave band energy,
Ex(t,m) and Es′(t,m) , respectively. Here, m is one-third
octave band index.

The partial loudness of the observed signal, Lx(t, k), es-
timated speech signal, Ls′(t, k), and output signal, Ly(t, k),
are calculated based on DIN45631 [7] using Ex(t,m) and
Es′(t,m). Here, k denotes bark band index and the unit of the
partial loudness is sone. In this algorithm, noise suppression
gain is determined to make Ly(t, k) correspond to Ls′(t, k).
Hence, the difference between Lx(t, k) and Ls′(t, k) is ob-
tained as

Ld(t, k) = Lx(t, k)− Ls′(t, k), (4)

where Ld(t, k) means suppression gain in sone for the corre-
spondence between Ly(t, k) and Ls′(t, k). The suppression
gain G(t, w) is obtained by using Ld(t, k) and look-up table
for conversion from sone to dB, and then it is transformed into
time domain to get FIR filter coefficient w(t) by inverse fast
Fourier transform (IFFT). The output signal y(t) is obtained by
convolution of x(t) and w(t).

3. Simulation
To confirm the feasibility of the proposed system, a numerical
simulation was conducted using MATLAB. The temporal vari-
ation of the partial loudness level of the third bark is shown in
Figure 2. In this figure, the blue, black, and red lines represent
partial loudness of the observed signal Lx(t, k), true speech
Ls(t, k), and estimated speech Ls′(t, k). Figure 3 shows the
result of instantaneous partial loudness level in each bark. In
this figure, the green line denotes the partial loudness level of
output signal Ly(t, k). It appears that the black and red lines
are almost similar. These results indicate that the partial loud-
ness level of estimated speech is almost the same as that of true
speech.

4. Evaluation
Evaluation of the output signal in the proposed system is per-
formed using the short-time objective intelligibility (STOI) [8].
For the sake of comparison, the output of conventional noise re-
duction is also evaluated. In this evaluation, pink noise is added
and its level varies from -10 dB to 10 dB of signal-to-noise ra-
tio (SNR) in steps of 2 dB. Figure 4 shows the result of this
simulation. The red and blue lines represent the score of output
signal of the proposed and conventional methods, respectively.
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Figure 1: Block diagram of proposed system.
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The green and black lines represent the score of speech compo-
nent of the output signal by applying the gain function to these
two methods, which is obtained by the convolution of speech
signal with the gain function in the proposed and conventional
methods.

For all the investigated SNR conditions, the trend of STOI
scores for the proposed method is almost the same as that for the
conventional method, although the proposed method included
extra noise, which is expected to include weak speech spectral
components. On the other hand, the scores of the speech part
with the gain function of the proposed method are superior to
that of the conventional method for low SNR conditions. This
result reveals that the proposed method has gain control based
on partial loudness, and improves the speech signal quality ef-
fectively, while including the extra noise. We think that there
is some possibility about positive effect of speech recognition
by using the extra noise, which has the same intonation as the
estimated speech [9].

5. Conclusions
In this paper, a noise suppression algorithm based on loudness
management is proposed. The results of our evaluation using
STOI indicate that the score of the clean-speech output by ap-
plying the gain function in the proposed method is improved
compared with that of the conventional method, while the score
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Figure 4: SNR vs. STOI.

of noisy-speech by the proposed method is almost the same as
that of the conventional method. These results imply that speech
components are preserved; however, a subjective evaluation has
not been performed.
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Abstract
Impaired hearing negatively affects the speech reception of an
increasing proportion of aging societies world-wide. Recently,
the German matrix sentence test was used with a fixed noise
level to quantify the effect of impaired hearing on speech re-
ception thresholds in 315 ears with differently pronounced hear-
ing loss. Two domains with different linear dependences of the
outcome on the pure-tone average hearing loss were identified.
One domain where listening in noise dominates the results and
one where the individual capacity for listening in “quiet” mainly
dominates. The aim of this work was to test to which extent
this behavior can be predicted by two different speech intel-
ligibility models based on the individual audiograms. There-
fore, the framework for auditory discrimination experiments
(FADE) and the speech intelligibility index (SII) were individ-
ualized with the 315 audiograms, and the predicted outcomes
were compared to the empirical data. Both models were found
to predict the characteristic change in the slope, where FADE
under-estimated and the SII over-estimated the linear depen-
dence in the listening-in-noise domain. Over-all, FADE predic-
tions were found to be more accurate than SII-based predictions
with root-mean-square prediction errors (RMSE) of 5.6 dB and
6.8 dB, respectively. A group-wise analysis revealed that for
special cases (e.g., steep hearing loss) with typically high pure-
tone averages FADE provides much more accurate predictions
(RMSE=6.7 dB) than the SII (RMSE=22.6 dB), while for low
pure tone averages the root-mean-square prediction error is typ-
ically one to two dB lower with the SII. The conclusion of this
paper is that the effect of impaired hearing on speech perception
can be only partly explained with the absolute hearing thresh-
old, which is primarily visible in the listening-in-noise domain.
Probably a supra-threshold component that is moderately cor-
related with the absolute hearing threshold of hearing loss is
responsible for up to 50% of the slope in the listening-in-noise
domain.
Index Terms: speech intelligibility prediction, matrix sentence
test, modeling approaches
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Abstract
A limited number of research developments in the field of
speech enhancement have been implemented into commercially
available hearing-aids. However, even sophisticated aids remain
ineffective in environments where there is overwhelming noise
present. Human performance in such situations is known to
be dependent upon input from both the aural and visual senses
that are then combined by sophisticated multi-level integration
strategies. In this paper, we consider the opportunities and chal-
lenges presented by hearing-aid development in an audio-visual
(AV) speech context. First, we posit the case for new multi-
modal AV algorithms that enhance speech quality and intelligi-
bility with the aid of video input and low-latency combination
of audio and visual speech information. Second, we consider
the challenges that the AV setting presents to hearing aid eval-
uation. We argue that to meaningfully reflect everyday usage,
hearing aid evaluation needs to be performed in an audio-visual
setting regardless of whether hearing aids are directly using vi-
sual information themselves. We consider the need for new AV
speech in noise listening tests, and for research into techniques
for predicting objective AV speech quality and intelligibility.
Finally, an AV speech enhancement evaluation challenge is pro-
posed as a starting point for stakeholder discussion.
Index Terms: audio-visual speech, speech enhancement,
speech intelligibility assessment

1. Introduction
The multimodal nature of speech is well established. Speech
is produced by the vibration of the vocal cords being filtered
according to the configuration of articulatory organs. Due to
the visibility of some of these articulators (i.e., lips, teeth and
tongue), there is an inherent and perceptible relationship be-
tween audio and visual speech properties. Pioneering work
[1, 2, 3] demonstrated that listeners exploit this relationship, un-
consciously lip reading to improve the intelligibility of speech
in noise [4]. Further, looking at a speaker makes speech more
detectable in noise [5], i.e., as if audio cues are being visually
enhanced [6].

Embracing the multimodal nature of speech presents both
opportunities and challenges for hearing assitive technology: on
the one hand there are opportunities for the design of new mul-
timodal algoirthms; on the other hand multimodality challenges
the current standards for hearing aid evaluation, which gener-
ally consider the perception of the audio signal in insolation.

This paper will first consider the potential benefits of de-
signing fully audio-visual hearing devices. In particular, we
consider the design of a new breed of device that employs both
microphones and video sensors. Such a device has the potential

to extract information from the pattern of the speaker’s face and
lip movements and to employ this information as an additional
input to speech enhancement algorithms. In Section 2 we dis-
cuss the AV-COGHEAR project that is aiming to build and test
prototypes of this technology.

In Section 3 we turn attention to the challenge of hearing
device evaluation. Our main concern in this regard is that stan-
dard evaluation strategies, which use an audio-only setting, may
not be predictive of a device’s performance when used in real
multimodal conditions. This is just as much true for devices
that use audio-only input as it is for audio-visual devices. We
consider the requirements of a fully multimodal evaluation and
conclude in Section 4 by making a proposal for an open multi-
modal speech enhancement challenge that we hope will stimu-
late fresh research in this area.

2. Audio-Visual speech enhancement
2.1. Background

Despite decades of research, there are are few speech enhance-
ment algorithms that can reliably increase the intelligibility of
speech corrupted by complex noises typical of everyday listen-
ing conditions. For example, spectral subtraction can be very
effective for reducing the perception of noise in stationary con-
ditions, but the apparently ‘cleaner’ processed speech turns out
to be no easier to understand. If multiple microphones are avail-
able then beamforming algorithms can lead to genuine speech
intelligibility improvements but even these techniques are hard
to employ in an unpredictable noise environment. Consequently
hearing aid algorithms achieve most of their benefit simply by
amplifying the signal into the audible range, and offer little ad-
vantage for speech listening when speech is present in high lev-
els of background noise.

There is reason to believe that, in contrast to audio-ony
algorithms, audio-visual speech enhancement approaches may
be able to offer consistent intelligibility gains – especially for
hearing impaired listeners. To understand why visual features
may be beneficial it is important to understanding why noise
renders speech less intelligible in the first place. The com-
monly understood view is that the noise sources reduce speech
intelligibility by energetically masking the target source. Vi-
sual signals can then restore intelligibility by delivering pho-
netic information that has been obliterated in the masked re-
gions. However, this is only part of the picture. Intelligibility is
also governed by informational masking (IM), i.e., the degree
to which the auditory system is able to, i) segregate spectro-
temporal (ST) regions that are speech dominated from those
that are background-dominated, and ii) focus attention on the
target regions.
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IM is amplified by even mild hearing impairment, leading
to large speech intelligibility losses in social situations where
speech is present in the noise background. It has been suggested
that this is partly due to the loss of precision with which ‘group-
ing cues’ are encoded - i.e., signal properties such as periodicity
and apparent location that allow for a signal to be sequentially
organised, [7]. Schwartz et al. [8] have shown that visual cues
can be exploited at a pre-phonetic stage, reducing IM. Essen-
tially, visual cues can supplement auditory grouping cues, pro-
viding a signal that directs attention to the ST regions dominated
by the target source.

We believe that listeners may benefit from an AV hearing
device that is able to mimic the IM releasing function of visual
cues. For example, the device would use the visual information
to direct the audio signal processing to amplify speech signal
components and attenuate noise components.

2.2. The AV-COGHEAR project

The ongoing UK Engineering and Physical Sciences Research
Council (EPSRC) funded AV-COGHEAR project, collabora-
tively led by Stirling and Sheffield Universities, is a first attempt
at developing a cognitively-inspired, adaptive and context-
aware approach for combining audio and visual cues (e.g., from
lip movement) to deliver speech intelligibility enhancement [9].

The project’s overarching goal is the development of next-
generation multi-modal hearing aids and listening devices that
have the potential to be a disruptive technology redefining user
expectations. Beyond hearing aid devices we foresee impact in
a number of areas including: cochlear implant signal process-
ing, speech recognition systems, auditory systems engineering
in general, and clinical, computational, cognitive and auditory
neuroscience. A preliminary deep-learning-driven, multi-modal
speech enhancement framework pioneered at Stirling [10] is
currently being significantly extended to incorporate innovative
perceptually-inspired models of auditory and AV scene analy-
sis developed at Sheffield [11]. Further, novel computational
models and theories of human vision developed at Stirling are
being deployed to enable real-time tracking of facial features.
Contextual multimodality selection mechanisms are being ex-
plored, and collaborations with SONOVA and MRC IHR, will
facilitate envisaged delivery of a clinically-tested software pro-
totype.

In the literature, much progress has been made to develop
enhanced speech processing algorithms capable of improving
speech quality. In contrast, little work has been conducted to
design algorithms that can improve speech intelligibility. In
this project, our hypothesis is that it is possible to combine vi-
sual and acoustic input to produce a multimodal hearing device
that is able to significantly boost speech intelligibility in the ev-
eryday listening environments, in which traditional audio-only
hearing devices prove ineffective.

To test this hypothesis, we are collaboratively working to
develop and clinically validate a next-generation cognitively-
inspired, AV hearing-device software prototype, capable of real-
time implementation, which will autonomously adapt to the na-
ture and quality of its visual and acoustic environmental inputs.
In this context, we have currently developed two contrasting
approaches to speech enhancement developed respectively at
Stirling and Sheffield: (1) A deep lip-reading driven Weiner
filtering approach, shown in Figure 1 and (2) an audio-visual
analysis-resynthesis approach, depicted in Figure 2 [12]. The
preliminary objective and subjective evaluation has revealed the
potential and reliability of the proposed AV technology as com-

pared to the state-of-the-art audio only speech processing tech-
niques.

3. Speech enhancement evaluation in
realistic AV settings

3.1. Background

The development of hearing devices that utilise both audio and
visual information, highlights the growing need for hearing de-
vices to be evaluated in realistic multimodal settings. In the lit-
erature, there exist several standards for evaluating hearing aid
algorithms in audio only settings, ranging from the Connected
Speech Test (CST) (CST; [13]), the Speech Intelligibility In-
dex (SSI) [14], to Kates’ extension to the SSI [15]. However,
there are no established standards for evaluating hearing-aid al-
gorithms in audio-visual settings. Note, an audio-visual exten-
sion of the CST [16] was proposed shortly after the audio-only
test but has not been widely adopted.

Evaluating a hearing device in an audio-only setting may
produce a misleading view of the speech intelligibility benefits
it will provide. Except in a few naturally audio-only situations,
(e.g., telephone conversations), hearing aid users who are strug-
gling to understand speech in noise will be closely attending the
speaker’s lips. These listeners will therefore experience a vi-
sual benefit which will improve their aided-performance. Note,
this is true regardless of whether the hearing aid is using the
visual signal itself. The size of this visual benefit needs to be
accounted for.

Visual-benefit would not be a problem for hearing aid eval-
uation if the size of the benefit was independent of the hearing
aid algorithm. If this was true then the ranking of algorithms
would remain the same and a best algorithm could still be cho-
sen. However, this is unlikely to be the case. For example,
consider an algorithm that emphasises aspects of the acoustic
signal that are redundantly encoded in the visual signal. This
algorithm might provide large benefits in an audio-only evalua-
tion but then be shown to proffer little benefit in a setting where
the user sees the lip movements directly.

Despite the clear necessity for hearing aid speech perfor-
mance to be evaluated from an AV perspective, there has been
very little work in this direction. Recently, Wu and Bentlier [17]
examined how visual cues impact directional benefit and pref-
erence for the directional microphone hearing-aid. The authors
administered two speech recognition in noise tests to assess di-
rectional benefit: (1) the AV version of the Connected Speech
Test (CST; [13, 16]) and (2) the Hearing in Noise Test [18] to
investigate the impact of visual cues on the directional benefit.
It was reported that visual cues significantly improved speech
recognition performance to its ceiling level and reduced the di-
rectional benefit and preference for directional processing.

3.2. Challenges for audio-visual hearing aid evaluation

In this section we outline the main challenges facing audio-
visual speech intelligibility testing.

3.2.1. Audio-visual HA performance predictors

In an ideal world, hearing aid algorithms could be evaluated
cheaply using algorithms that would predict the intelligibility
and/or quality of the processed speech. The processed audio
speech signal and its video counterpart could be fed into an ob-
jective test that would accurately predict intelligibility of the
signal. Unfortunately, this is an unrealistic proposition which
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Figure 1: Deep lip-reading driven Weiner filtering (Stirling)

Figure 2: Audio-visual analysis-resynthesis framework (Sheffield)

remains a challenge even for audio-only evaluation.
There have been many proposed metrics for objective

speech quality and intelligibility prediction. Algorithms are
categorised as intrusive or non-intrusive depending on whether
they require a clean speech reference signal or not, respectively.
We can assume that for hearing-aid development a reference
signal can be available and therefore intrusive algorithms can
be applied. These include the normalized covariance metric
(NCM) [19] and short-time object intelligibility (STOI) [20]
which predict intelligibility and perceptual evaluation of speech
quality (PESQ) [21] which predicts speech quality. Although
different in detail, these algorithms all operate by making a
weighted comparison between an auditorily-inspired represen-
tation of the reference and corrupted signal.

More recently developed predictors have been especially
designed for hearing aid (HA) processing. These include
the HA speech quality index (HASQI) [22], the HA speech
intelligibility index (HASPI) [23], and an extension of the
perception-model-based quality prediction method (PEMO-Q)
[24] adapted for hearing impairment (PEMO-Q-HI) [25]. These
predictors again compare a reference and a processed signal in
an auditory model space, however, their auditory models can be
tuned to mimic the effects of a listener’s hearing impairment,
(e.g., raised thresholds, filter broadening, etc).

A particular problem with these approaches is that their per-
formance can be sensitive to the type of processing performed

by the aid (see [26] for a review). For example, non-linear fre-
quency compression (NFC) – a recent development in hearing
aids which warps the signal spectrum to fit the listener’s us-
able frequency range – can generate big apparent differences
between the reference and processed signal. Unless the metric
is designed to expect NFC and compensate for this frequency
warping it will predict the NFC processed signal to have low
quality/intelligibility. The fundamental problem here is that the
metrics are necessarily built on shallow models of speech per-
ception. The resulting need to fit the prediction models to hear-
ing aid algorithms is surely problematic if they are expected to
effectively evaluate novel and unanticipated approaches to hear-
ing aid signal processing.

When considering audio-visual intelligibility the situation
is worse. There are no adequate models of how acoustic and
visual speech information are combined during speech percep-
tion. There are currently no models that can predict effects such
as informational masking release in non-stationary masker con-
ditions. Without this understanding there is no basis on which
to start building models of AV speech intelligibility.

3.2.2. Difficulties with speech-in-noise listening tests

There are a large number of standard speech-in-noise listen-
ing tests that can be used to directly measure the intelligibil-
ity benefit of a hearing device. They include adaptive and
fixed SNR tests. The former include the Hearing in Noise Test
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(HINT) [27], QuickSIN [28], Words in Noise (WIN) [29, 30]
and Bamford-Kowal-Bench SIN (BKB-SIN) [31, 32]. These
tests automatically adapt the SNR to the threshold at which
communication breaks down (i.e., at which a fixed percentage
of words are incorrectly recognised). They are quick and easy
to administer but have the drawback of not being able to provide
information about performance at other SNRs above and below
this threshold. Fixed SNR tests such as CST [13] and Speech
Perception in Noise Test (SPIN) [33] measure the percentage
of words correctly recognised at a presentation SNR. However,
they are susceptible to ceiling effects, i.e., no benefit can be
measured once all words are recognised correctly. Choosing an
appropriate SNR can be difficult.

Tests vary with respect to the type of speech material - some
using isolated words and others complete sentences. Sentences
are regarded as more appropriate materials for intelligibility
measurement as they reflect real speech and produce steeper
psychometric functions that more accurately estimate threshold
SNRs. Sentences need to be carefully designed to be phonet-
ically balanced and to have low predictability. So-called ‘ma-
trix tests’ achieve this by using randomly chosen words from
the closed-set in each word position in a sentence: e.g., a sen-
tence might be composed as: <name>, <verb>, <number>,
<adjective>, <noun> with 10 choices for each slot leading to
100,000 possible sentences. Such tests have been designed for
many different languages, e.g. German [34, 35], Spanish [36],
English [37], etc. There has been recent success in predicting
sentence test performance in a wide range of noise conditions
using statistical techniques adapted from the speech recognition
community [38].

Speech-in-noise tests have primarily been designed for use
in clinical settings for fitting a device to a given user. Com-
paring two devices for a given user is a well-posed problem.
However, if a conclusion is required about which device is bet-
ter in a more general sense, then obvious problems emerge. The
question is impossible to answer independently of some charac-
terisation of the user, i.e., the precise nature and degree of their
hearing deficit. The test would then require a pool of listeners
matching this characterisation that is large enough to average
out remaining individual differences. This is particularly prob-
lematic given that audiograms – the standard characterisation of
hearing deficit – can be poor predictors of speech in noise per-
formance (and even poorer predictors of audio-visual speech
recognition ability).

The difficulties experienced with audio-only testing are
compounded in audio-visual settings, specifically: the visual
cues may make it more likely to encounter ceiling effects; the
test-retest scores are likely to be more variable given the in-
creased cognitive complexity of the task; there is a starker con-
trast between controlled, well-framed, clearly articulated visual
input and video characteristic of everyday conversational set-
tings; and selecting homogeneous listener pools is more chal-
lenging as there are large and unpredictable individual differ-
ences in visual speech benefit amongst listeners.

3.2.3. The need for a realistic AV corpus

Reliable evaluation of future AV speech filtering technology
will require subjective intelligibilty assessment. This raises the
question of what type of speech material to use. Although there
exist a number of small well-controlled audio-visual speech cor-
pora, such as BANCA [39], AVICAR [40], VidTIMIT [41],
and Grid [42], there is a need for evaluation of multi-modal
speech enhancement systems using realistic audiovisual speech

data. Audio-visual datasets are required in which speakers are
speaking more naturally than in many existing corpora, includ-
ing conversational speech and imperfect visual data. This is
represented by the speaker moving their head, obscuring their
face, and also different levels of background noise to take ac-
count of the Lombard effect (where speakers naturally adjust
their speech to take account of different levels of background
noise). To our knowledge, there is no corpus available that con-
tains a sufficient range of AV speech data, or variety of A and
V noise (i.e., acoustic noise, speaker movement and occlusion,
etc.).

4. Conclusion – Towards an open AV
evaluation framework

Future multimodal hearing devices will demand new ap-
proaches to evaluation. There will be a need to reconsider how
hearing aid algorithms are evaluated during development so as
to incorporate visual input, subject to real-time, low-latency
constraints. There is also need to reconsider how devices are
prescribed and fitted to patients. It will no longer be appropri-
ate to use audio-only speech-in-noise tests. For the new devices
the key question will be how the AV processing of the device in-
teracts with the AV processing of the user when presented with
realistic AV input.

New standards will only emerge from discussion across the
sector involving manufacturers, health care professionals, audi-
ologists and patients. We hope the 2017 CHAT Workshop will
provide a starting point for this activity. To stimulate progress
we plan to organise an open competition for AV speech en-
hancement evaluation, which could be run as part of an inter-
national INTERSPEECH Workshop in 2018. The competition
could run along similar lines to the ISA Blizzard Challenge
where the cost of participation pays for evaluation of the al-
gorithms.

We conclude by presenting a tentative proposal for hearing
algorithm evaluation with the aim of seeking feedback from the
community.

The evaluation campaign will have two phases:
Phase 1 - development of enhancement algorithms: The

proposal would be to use the existing AV Grid corpus [42] as
the source material. This has a design similar to a matrix test
and has already had extensive use in audio-only speech intel-
ligibility studies. We would then mix this corpus with every-
day complex noise backgrounds such as café and street noises
recorded in the CHiME-3 corpus [43]. Participants would be
invited to apply their algorithms (audio-only or audio-visual).
We would then measure subjective intelligibility and subjective
quality using a large bank of paid listening subjects who would
be presented with the processed audio alongside the video. The
evaluators could be NH or a homogenous group of HI listeners.

Phase 2 - development of new objective measures: Phase
1 will generate a large amount of listener data, i.e., showing
how listeners have responded to variously-processed noisy AV
speech samples. This data can then be used to test models that
predict AV intelligibility and speech quality. We could imme-
diately evaluate existing audio-based predictors which would
be expected to underestimate AV performance. The challenge
would then be to develop new AV predictors that extend these
models. We would release a subset of the data from Phase 1 for
model development and retain a hidden set for model evalua-
tion.
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Abstract
Source separation is a useful technology for improving the

benefit from hearing aids. However, most of the existing ap-
proaches to evaluating source separation rely on computational
methods, and do not consider the effect of the algorithm on the
end user. We seek to address this mismatch by quantifying the
benefit of two state-of-the-art deep neural network (DNN) based
source separation techniques, in terms of actual speech intel-
ligibility benefits evaluated via subjective listening tests with
15 hearing impaired (HI) listeners, as well as more established
computational metrics by which most source separation algo-
rithms are currently compared. We present here our proposed
source separation approach which is a novel application of the
’Convolutional Recurrent Neural Network’ (CRNN) deep learn-
ing architecture, and compare it with feedforward deep neural
network (FDNN) approach. We evaluate these approaches on
two talker mixtures from Danish hearing in noise test (HINT)
database. We are particularly interested in speech separation in
this work as the hearing-impaired listeners have problems un-
derstanding speech in the presence of one or more competing
voices.
Index Terms: source separation, deep neural networks, low la-
tency, hearing aids

1. Introduction
Source separation is an important technology for improving
hearing aid performance, and recently, large advances in this
domain have been achieved using a range of techniques using
‘deep neural networks (DNN)’ – whereby mapping of an in-
put to a target output is realised through learning complicated
non-linear relationships which are captured within the network
parameters. These approaches achieve state-of-the-art perfor-
mance even at very low latency, which is critical for hearing
aids [1]. It has been postulated (e.g., in [2] ) that delays larger
than 10 ms are objectionable to hearing impaired (HI) listeners.
The algorithmic delay of the DNN based approach used in our
work is 8 ms. This low-latency performance is therefore one of
the critical design features when considering source separation
for hearing aids.

Alongside low-latency performance, another primary goal
of a hearing-aid algorithm is to improve speech intelligibil-
ity, yet most of the current evaluation methods do not address
this need with respect to hearing-impaired listeners. Typically,
source separation algorithms, and the literature which reports
them, focuses primarily on the performance of the algorithms
in terms of separated source energy (e.g., source to distortion

∗ The authors wish to thank CSC-IT Centre of Science Ltd., Finland, for pro-
viding computational resources used in experiments reported in this paper.

† The author is currently with Max Planck Institute for Intelligent Systems.

ratio (SDR) [3]), predicted perceptual quality (PEASS [4]), or
predicted intelligibility. The existing predicted intelligibility
metrics such as short term objective intelligibility (STOI [5])
and extended short term intelligibility (ESTOI [6]) are based on
models of normal hearing and tested on normal hearing listen-
ers, so they may not be accurate predictors of algorithm perfor-
mance for use in hearing aids.

Overall, current trends for developing and evaluating source
separation as a general technology do not adequately consider
the needs of its use specifically for hearing aids. We therefore
seek to address this in both development of low-latency source
separation and evaluation strategy and present our findings to
date here.

2. DNN for source separation
We use the time-frequency masking paradigm of source separa-
tion whereby a DNN is used to predict time-frequency mask
corresponding to the target speaker. The input features are
short-time Fourier transform (STFT) coefficients and output is
soft ratio mask defined as the ratio of magnitude spectrum of
the target speaker and sum of magnitude spectra of constituent
sources in the acoustic mixture (e.g., in [7, 8]). The predicted
time-frequency mask is multiplied with mixture spectrum to
yield the target speaker spectrum.

We investigate convolutional recurrent neural network
(CRNN) for source separation, originally proposed in [7]. The
motivation of using this architecture is to combine the feature
extraction property of convolutional layers from the input, i.e.,
time-frequency representation of the acoustic mixture in our
case, and the ability of recurrent layers (with long short term
memory (LSTM) units [9]) to model long term temporal depen-
dencies. We compare this architecture to a feedforward DNN
architecture similar to the one used in [10]. Table 1 shows the
hyperparameters used for the two architectures. Note that in
case of FDNN, frames spanning previous temporal context of
32 ms is fed to the input for estimation of the current frame, as
was done in [10]. For more details on hyperparameter selection
for the two architectures, please refer [7]. Output neurons for
both topologies use sigmoid activations while hidden units for
CRNN are rectified linear units and FDNN are sigmoid units.
Max pooling is used after each convolutional layer in CRNN
but only along frequency axis. Dropout regularization of 0.4 is
used. For training DNNs Keras library [11] is used.

3. Evaluation
The dataset used for training and evaluation of neural net-
works is an extended version of the Danish hearing in noise
test (HINT) dataset developed by [12]. The extended version
consists of three male and three female speakers, each of them
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Table 1: Hyperparameters used for the FDNN and CRNN. The pooling scheme represents max pooling operation along time and
frequency axes.

FDNN CRNN

hidden
layers

hidden
neurons

previous
context

conv.
layers

recurr.
layers

recurr.
neurons

conv.
filters

pooling
scheme

sequence
length

conv.
kernel size

4 1024 32 ms 3 1 256 256 1 by 2 512 ms 3× 3

recorded speaking 13 lists consisting of 5 word natural sen-
tences [13]. We use four lists for training and one list for vali-
dation. The remaining eight lists are used for testing. The test
mixtures are prepared by summing the signals corresponding to
the two talkers. The evaluation of the methods is based upon:
1) Computational metrics of separation, i.e., source to distor-
tion ratio (SDR), and extended short term objective intelligibil-
ity (ESTOI), the latter being better suited to our task as inter-
ferer in our case (i.e., for two talker mixtures) is non stationary;
and 2) Word recognition tests with hearing impaired listeners.

For subjective listening tests, a target-masker (TM) set up
is used where one of the constituent speaker serves as the target
signal. A cue is provided before the playback to indicate which
of the speaker sentence the listener must reproduce. The listen-
ing test scores are percentage of correct word scores reproduced
by the listener, transformed according to [14] to remove floor
and ceiling effects. The study involves 15 hearing-impaired lis-
teners with moderate to severe sloping hearing losses. In ad-
dition to the two DNN test conditions, we have two more test
conditions: one where unprocessed mixture is presented (re-
ferred as Sum) and the other where the ground truth source is
presented (referred as Separate). A comparison between these
four test conditions is made.

4. Results and conclusions
Table 2 reports SDR and ESTOI values corresponding to FDNN
and CRNN, for three speaker pairs: M1 F1, M1 M2, and F1 F2.
CRNNs here showed a slightly better average ESTOI scores
than FDNN. The subjective listening test, as depicted in Fig-
ure 1, showed a significant benefit of 35 % points with the DNN
methods in comparison to the Sum condition. The difference
between the two DNN modes was not found statistically signif-
icant albeit a slightly higher mean accuracy was observed for
CRNN as compared to FDNN. It is interesting to observe that
ESTOI metric showed similar pattern but the difference in per-
formance between the two DNN architecture is not large enough
to infer if the ESTOI metric is a good predictor of intelligibility
performance for HI listeners.

The obtained results in this study show that DNN based al-
gorithms have significant potential for improving speech intelli-
gibility for HI listeners in tasks where a speech signal of interest
is to be attended to in the presence of a masker speech signal.
A more exhaustive description of listening test results will be
reported in [15].

Table 2: Performance metrics for the two DNN architectures.

Speaker pair FDNN CRNN

SDR ESTOI SDR ESTOI

M1 F1 7.42 0.77 7.44 0.79
M1 M2 5.96 0.76 6.06 0.78
F1 F2 5.40 0.71 5.56 0.72
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Figure 1: Word recognition rates for the two DNN architectures
for TM task. The vertical bars denote 0.95 confidence intervals.
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Abstract
Dereverberation processing is necessary for hearing-aid sys-
tems with a limitation of computational cost because reverber-
ation degrades speech intelligibility in some reverberation en-
vironments. The spectral subtraction (SS) method is a simple
and well-known technique as not only a noise-reduction method
but also a dereverberation method. In dereverberation methods
that are based on SS for hearing aids, it is desirable to estimate
the reverberation power with blind processing. The SS-based
blind-estimation method was proposed by Sunohara et al. using
exponential averaging with attack and release time constants for
single-channel speech signals.

In this paper, we evaluate the estimation accuracy of the
reverberation components of the proposed method. The esti-
mation error, which is the difference between the true and esti-
mated reverberation power was used for evaluation, that was
compared the results obtained with the method proposed by
Lebart et al., which is a non-blind SS-based dereverberation
method. From the results, the reverberation power was more
correctly estimated, especially in the case of long reverberation,
and the estimation error of the proposed method was about a
half of the well-known non-blind method by Lebart.
Index Terms: reverberant speech, blind estimation, hearing
aids, exponential averaging, spectral subtraction

1. Introduction
Speech recognition is difficult owing to the reverberation. In
particular, hearing-impaired persons have difficulties when lis-
tening to a speech in reverberation environments. For example,
their recognition rates of speech decrease as the reverberation
time increases [1]. For severely hearing-impaired listeners, it
becomes hard to follow conversations in noisy or reverberant
conditions even when speaking with only one person, as Moore
et al. reported [2].

According to Folkeard et al.[3], listening may be im-
proved performing dereverberation processing in hearing aids
for hearing-impaired persons. Many researchers have studied
dereverberation processing for a long time, and many methods
have been proposed. Neely et al. proposed a method using in-
verse filtering of the room impulse response [4], and Gannot et
al. employed a signal subspace approach [5]. Although these
methods are effective for dereverberation, it is hard for them to
be implemented into hearing aids because of the limited of com-
putational resource available. A method that is considered to
be relatively simple is the spectral subtraction (SS) method [6],
which is effective not only for noise reduction but also for dere-
verberation [7]. Löllmann proposed a dereverberation method
based on the SS method for hearing-aid systems[8].

The accurate estimation of reverberant components is im-
portant for the SS method. There are two kinds of estima-
tion methods—namely, non-blind methods and blind methods.
For non-blind estimation methods [9, 10], information about
the sound field, such as the reverberation time, is required be-
forehand. On the other hand, ordinary blind estimation meth-
ods do not require previous information about the sound field
[11, 12, 13]. However, most of them require multiple mi-
crophones to estimate the reverberant components; hence, it
is difficult to implement them into hearing aids. Recently,
we proposed a dereverberation system with the blind estima-
tion method using only single-channel speech signals based on
exponential averaging with attack and release time constants
[14, 15].

In this paper, we evaluate our proposed dereverberation sys-
tem with blind estimation of reverberation power was evalu-
ated. True reverberation power was calculated from the impulse
responses without direct sound to obtain an estimation error,
which is the difference between true and estimated reverbera-
tion powers. The estimation error of the proposed estimation
method was compared with that of a typical non-blind method
proposed by Lebart [9].

2. Dereverberation Method
2.1. Spectral Subtraction

The SS method was proposed by Boll in 1979 as a noise-
reduction method [6]. It is also known to be valid for dere-
verberation. Then, Kinoshita et al. evaluated the validity of
the SS method for the reduction of latter reverberant compo-
nents caused by evaluation experiments using spectrogram and
automatic speech recognition (ASR) [7]. The above-mentioned
method is relatively simple compared with other methods, such
as inverse filtering or the signal subspace approach [4, 5]. The
procedure of the SS method is as follows:

Step:1 Perform a Fourier transformation on the input signal.

Step:2 Estimate the noise/reverberation power of the input sig-
nal.

Step:3 Subtract the estimated noise/reverberation power from
the power of the input signal.
(This subtracted power is treated as the gain.)

Step:4 Multiply the gain by the input power.

In the second step in the procedure, it is necessary to accu-
rately estimate the reverberation power for dereverberation. In
the dereverberation method proposed by Lebart, the reverbera-
tion power is estimated using an impulse response model [9],
and it is a well-known non-blind estimation method.
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Figure 1: System overview. The input signal flows through all-pass filters (APFs) with the warping parameter to analyze the input
signal. The gain function G(l, ω) is determined by the estimated reverberation power.

2.2. Exponential Averaging with Attack and Release Time
Constants

Figure 1 shows the signal flow of our dereverberation system,
which includes our proposed estimation method for reverbera-
tion power. An input signal from the microphone is analyzed
using a frequency-warped filterbank (FWF) [16, 17], and trans-
formed into the frequency domain using FFT. Sunohara et al.
applied the weighted overlap-add (WOLA) filterbank[18] in a
part of analysis/synthesis[14]. After the analysis, the smoothed
signal power is calculated, and then the reverberation power
is also estimated from the smoothed signal power. The gain
function, which is derived from the above two powers, was
smoothed in order to avoid musical noise issues in the output
signal. The smoothed gain function was then transformed into
the time domain and convolved with the warped signal that was
passed through in each all-pass filter (APF).

Exponential averaging is one of the smoothing methods that
were proposed by Roberts [19], and it is frequently used as
a low-pass filter (LPF) on the field of signal processing. The
weighting coefficient changes depending on the relationship be-
tween the estimated reverberation power and the input signal
power. This method is given as follows.

Input signal x(t) is generated by convolving the source sig-
nal s(t) with the room impulse response h(t), which includes
the reverberation component,

x(t) = s(t) ∗ h(t), (1)

where ∗ represents the convolution operation. The frequency-
analyzed input signal obtained by FWF is represented as
X(l, ω), where l and ω denote the time and frequency indexes,
respectively. The smoothed power |X̂(l, ω)|2 is given as

|X̂(l, ω)|2 = β|X(l, ω)|2 + (1− β)|X̂(l − 1, ω)|2, (2)

where the parameter β (0 < β ≤ 1) represents the weighting
value in exponential averaging. |X̂(l, ω)|2 includes the rever-
beration power |Ẑ(l, ω)|2. Sunohara et al. estimated the rever-
beration power [14],

|Ẑ(l, ω)|2 =γ(l)|X̂(l, ω)|2+{1− γ(l)}|Ẑ(l − 1, ω)|2, (3)

where γ(l) is a parameter that determines the time constant of
exponential averaging

γ(l) =

{
γat, (|X̂(l, ω)|2 > |Ẑ(l − 1, ω)|2)

γre, (otherwise)
. (4)

Finally, the gain functionG(l, ω) is obtained from the smoothed
power of the input signal |X̂(l, ω)|2 and reverberation signal
|Ẑ(l, ω)|2,

G(l, ω)=





√
|X̂(l,ω)|2−|Ẑ(l,ω)|2

|X̂(l,ω)|2
(|X̂(l, ω)|2> |Ẑ(l−1, ω)|2)

0 (otherwise)
.

(5)
Then, the gain functionG(l, ω) is smoothed toGsm(l, ω) using
the exponential averaging, as shown in Eq.(2). Gsm(l, ω) is
transformed by IFFT and convolved with the signal analyzed
by APFs as shown in Fig.1.

2.3. Well-known non-blind estimation method

Lebart used the power spectral density (PSD) to estimate the re-
verberation power from the reverberation time, which is a well-
known non-blind estimation method [9].

|Z̃(l, ω)|2 = e−2∆l0 |X̂(l − l0, ω)|2, (6)

where l0 is the typical duration for which it can be assumed that
the signal is stationary. In this paper, let l0 be 50 ms and

∆ =
3ln10

Tr
, (7)

where Tr is the reverberation time.

3. Experiment
In this section, a numerical experiment is conducted in order
to evaluate the accuracy of proposed method by comparing the
estimated reverberation power with true one as the estimation
error.

3.1. Method

The reverberation speeches for the experiment were created by
convolving anechoic speeches with an impulse response. The
reverberation was modeled based on Polack’s model [20]. In
Polack’s model, it is assumed that the room impulse response
h(t) is generated using an unsteady stochastic process

h(t) =

{
0, t < 0

b(t)e−∆t, t ≥ 0
, (8)
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Figure 2: Pattern diagram of the room impulse response based
on the model proposed by Polack [20]. The first part hd(t)
represents a direct sound and the second part hr(t) represents a
reverberation component. The border between the direct sound
and the reverberation component was 50 ms.

where b(t) is a steady Gaussian noise with an average of 0, and
∆ is shown in Eq.(7).

Impulse responses were created based on this model. A di-
rect sound is assigned at the beginning of the impulse response,
and the reverberation decay starts from 50 ms after the direct
sound. Let hd(t) be the first part before 50 ms and hr(t) be
the second part after 50 ms. The impulse response with direct
sound and the reverberation component is defined by

ĥ(t) =





0, t < 0

hd(t), 0 ≤ t < 50 ms

hr(t), 50 ms ≥ t
, (9)

hd(t) =

{
1, t = 0

0, 0 ≥ t , (10)

hr(t) = b(t)e−∆t, (11)

where b(t) is the same as shown in Eq. (8). Figure 2 shows a
pattern diagram of the impulse response.

For the evaluation, we used the difference between the es-
timated reverberation power and the true reverberation power,
which is the estimation error. First, a true reverberation speech
without direct sound was generated by convolving an anechoic
speech with hr(t),

ztrue(t) = s(t) ∗ hr(t), (12)

Table 1: Experimental condition.

Parameter Value
γat (time constant) 3.125× 10−5

(2.0 s)
γre (time constant) 6.250× 10−4

(1.0× 10−1 s)
Gain estimation parameter: 1.250× 10−2

attack (time constant) (5.0× 10−3 s)
Gain estimation parameter: 9.375× 10−4

release (time constant) (6.7× 10−2 s)
Smoothing parameter: β 1.250× 10−3

Lower bound of gain reduction: η 0
Sampling frequency [kHz] 16
Reverberation time [s] 1.0, 1.5, 2.0
FFT length [samples] (time) 32 (2 ms)
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Figure 3: Level of estimated powers. This figure shows the level
of powers of the input signal (blue line), the reverberation sig-
nals estimated by the proposed method (black line) and by the
non-blind method proposed by Lebart (green line), and the true
reverberation signal (red broken line) at the 8th frequency band
in FWF, whose central frequency was 1100 Hz. The reverbera-
tion time Tr was 1.5 s.

which is ztrue(t) a true reverberation speech. It was trans-
formed to |Ztrue(l, ω)| in the frequency domain by FFT, and
|Ztrue(l, ω)| was smoothed according to Eq.(2),

|Ẑtrue(l, ω)|2 = β|Ztrue(l, ω)|2 + (1− β)|Ẑtrue(l − 1, ω)|2.
(13)

Second, the sum of the estimated reverberation power
|Ẑ(l, ω)|2 and the true reverberation power |Ẑtrue(l, ω)|2 was
calculated for each method, after which the sum of the dif-
ference between the estimated and true reverberation powers
Sdiff (ω) was calculated,

Sest(ω) =
∑

l

|Ẑ(l, ω)|2, (14)

Strue(ω) =
∑

l

|Ẑtrue(l, ω)|2, (15)

Sdiff (ω) =
∑

l

||Ẑ(l, ω)|2 − |Ẑtrue(l, ω)|2|. (16)

In this analysis, the summation was calculated for 3.0 s from the
beginning. Finally, the ratio of the sum of the difference power
Sdiff (ω) and the sum of true reverberation power Strue(ω)
was defined as the error ratio in the reverberation power estima-
tion ZER(ω),

ZER(ω) =
Sdiff

Strue
. (17)

We compared the values of ZER of the proposed method and
the well-known Lebart method at each reverberation time. The
speech sources were selected from the familiarity-controlled
word-lists (FW03) [21], which contains words spoken by 2
male and 2 female Japanese speakers. In this experiment, 100
words were used for each speaker, and the total number of
words was 400. After calculating ZER(ω) for each sound, his-
tograms were approximated with the kernel distribution using
MATLAB, and the expected value E(ω) was then calculated
for each frequency band. The number of bins on the histograms
was 100, and the parameters are defined in Table 1.

3.2. Results

Figure 3 represents one of the estimated powers when the rever-
beration time Tr was 1.5 s. This figure shows each power of the
input signal, reverberation signals estimated by the proposed
method and Lebart method, and the true reverberation signal.
The power of the reverberation signal estimated by the Lebart
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method is larger than that of the reverberation signal estimated
by our proposed method, especially at the beginning part. It is
also larger than the power of the true reverberation signal.
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Figure 4: Experimental results obtained when the reverberation
time Tr was 1.0 s. The vertical axis represents E(ω) of the log-
arithmic scale and the horizontal axis represents the frequency
index ω in FWF.
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Figure 5: Experimental results obtained when the reverberation
time Tr was 1.5 s. The vertical axis represents E(ω) of the log-
arithmic scale and the horizontal axis represents the frequency
index ω in FWF.

Figure 4, 5 and 6 show the error ratio E(ω) of the loga-
rithmic scale at each reverberation time, 1.0 s, 1.5 s, and 2.0 s,
respectively. In each figure, the blue line shows E(ω) in the
non-blind method, and the orange line shows E(ω) in the pro-
posed method. For the proposed method, E(ω) exceeded that
of the non-blind method proposed by Lebart at each reverbera-
tion time and in each frequency band. In the case of long rever-
beration condition, the value of E(ω) for the proposed method
was around 3 dB lower than that of the non-blind method pro-
posed by Lebart. This means that in the proposed method, the
value of E(ω) was about one half of Lebart’s method. It was
also shown that by using our proposed method, the reverbera-
tion power is more correctly estimated than the other method.
Because the value ofE(ω) in the proposed method decreases as
the reverberation time increases, the proposed method may be
more effective as the reverberation time increases.

4. Conclusions
We evaluate the implementation of our newly proposed blind
reverberation power-estimation method which was proposed
for the purpose of implementing that into hearing-aid devices.
The estimated reverberation power of the proposed method was
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Figure 6: Experimental results obtained when the reverberation
time Tr was 2.0 s. The vertical axis represents E(ω) of the log-
arithmic scale and the horizontal axis represents the frequency
index ω in FWF.

compared with that of well-known non-blind methods. We per-
formed experiments for three kinds of reverberation times. The
results obtained suggested that the proposed method is more
effective than the well-known non-blind method, regardless of
the reverberation time. In the future, the speech signal pro-
cessed by this proposed method will be evaluated using objec-
tive/subjective experiments. Furthermore, reverberation power-
estimation methods for impulse responses including early re-
flection sounds will be studied.
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Abstract
The simulation framework for auditory discrimination exper-
iments (FADE) was adopted and validated to predict the in-
dividual aided speech-in-noise recognition performance of lis-
teners with normal and impaired hearing with and without a
given noise suppression strategy. FADE uses a simple auto-
matic speech recognizer (ASR) to estimate the lowest achiev-
able speech reception thresholds (SRTs) from simulated speech
recognition experiments in an objective way, independent from
any empirical reference data. Empirical data from the literature
was used to evaluate the model in terms of predicted SRTs and
benefits in SRT with the German matrix sentence recognition
test when using eight single and multi-channel binaural hear-
ing aid pre-processing algorithms. To allow individual predic-
tions of SRTs in binaural conditions, the model was extended
by implementing a simple “better ear” approach and individ-
ualized by taking into account the audiograms. In a realistic
binaural cafeteria condition, FADE explained about 90% of the
variance of the empirical SRTs for a group of normal-hearing
listeners and predicted the corresponding benefits with a root-
mean-square prediction error of 0.6 dB. This high prediction
accuracy highlights the potential of the current approach for the
objective assessment of benefits in SRT without any a-priori
knowledge about the empirical data. The predictions for the
group of hearing-impaired listeners explained 75% of the vari-
ance of the empirical SRTs, while the individual predictions ex-
plained less than 25%. This indicates that additional individual
factors, such as, e.g., a supra-threshold processing deficiency,
should be taken into account for improving the accuracy of in-
dividual predictions with impaired hearing. A competing talker
condition clearly showed one limitation of current ASR tech-
nology, as the empirical performance with SRTs lower less than
-20 dB could not be predicted.
Index Terms: speech recognition; aided hearing; objective
evaluation; model
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Abstract 

Speech audiometry is one of the methods for evaluating hearing 

status, and recently it’s tended to be implemented on mobile 

phones with the development of internet and smart devices. 

Although several applications include the function of speech 

audiometry, the effectiveness of this function was rarely 

reported. 

In this work, we developed an Apple iOS-based application 

(Hearing Assistant) with functions of pure-tone audiometry and 

speech audiometry for people speaking Mandarin Chinese. The 

speech material was designed to reflect listeners’ audibility at 

specified frequencies. The reliability of the speech audiometry 

was analyzed and discussed according to the users’ data 

collected through this application.  

The results showed a significant but week correlation 

between pure-tone thresholds and scores of speech audiometry, 

indicating the speech audiometry can be used to discriminate 

impaired and normal hearing but it’s not accurate enough to 

evaluate hearing thresholds quantitatively at each test frequency.  

Index Terms: speech intelligibility, hearing impairment, 

mobile devices, iOS-based application 

1. Introduction 

Recently, there is increasing interest in developing a suitable 

method for self-assessment of hearing situation and conducting 

hearing compensation on smartphones. Some studies have 

concentrated on implementing pure tone audiometry (PTA) on 

smartphones, which lead to some apps (uHear, EarTrumpet, 

etc). However, PTA has critical requirement on test 

environment and stimuli calibration. Factors influencing PTA 

test on smartphones have been studied in previous works, 

including the test program [1], the test accuracy [2], the time 

cost [3], the reference sound level [4], the user types [5, 6], and 

the usage of specific extra-devices [7].  

Some applications are available for speech audiometry with 

different test materials and procedures, for instance, uHear uses 

Acceptable Noise Level Speech Recognition Test, Siemens 

Hearing Test uses nonsense word recognition test in noise. All 

of these applications can show speech intelligibility and suggest 

brief rating of hearing impairment, but unlike PTA test, they 

can’t supply any prescription for frequency-dependent hearing 

compensation. The present work aimed to develop an iOS-

based speech audiometry for predicting the degree of hearing 

impairment at the specified frequencies.  

The method of supra-threshold word identification was 

adopted in the speech audiometry, as this test is relatively robust 

for the variation of sound level. It has been reported that  the 

speech perception performance remains constant for both 

normal-hearing and hearing-impaired people when sound level 

is in a reasonable range [8], and the speech recognition score 

decreases when stimuli level exceeds comfortable level [9]. A 

paradigm of identifying the spoken word in a confused word 

pair was used in the audiometry, in which the confused word 

pair was shown as text on the mobile screen. To select 

appropriated words as speech materials and produce confused 

word pairs, acoustic features of Mandarin initials and finals 

were studied. 

The distinctive features of confused Mandarin initials and 

finals has been systematically studied in [10]. Based on this 

work, we produced monosyllabic word pairs to assess 

frequency-dependent hearing impairment by acoustic 

simulation with normal hearing listeners in a previous study 

[11]. The monosyllabic words were in consonant-vowel (CV) 

structure. For each pair, the syllables shared the same consonant 

or vowels, and kept the other phoneme different but easy to 

confuse, e.g. “/ba4/ vs./pa4/” or “/tao2/ vs. /tou2/” (the number 

represents the tonal pattern, and they were the same within a 

pair). Hearing impairment was simulated by processing stimuli 

with a serial of band-stop filters at different cut-off frequencies. 

Normal-hearing listeners took part in the experiment and their 

task was to select the correct syllable within each pair after one 

syllable was displayed. The results showed a significant 

correlation between frequency ranges of the band-stop filters 

(where hearing impairment occurred) and the frequency range 

of the distinctive feature for each pair, indicating the feasibility 

to predict the frequency-dependent hearing impairment by 

using speech audiometry with confused words pairs. However, 

these results were based on hearing-loss simulation in 

laboratory, and the frequency range was mainly below 2000 Hz.  

In the present study, test material was determined as 

disyllabic words, as they’re more intelligible than mono-

syllabic for Mandarin Chinese. The distinctive feature of the 

word pairs was determined as the frequency and intensity of 

formants, since speech formants are the most important acoustic 

feature for identifying a phoneme. Additionally, the general 

syllable structure of Chinese words, consonant-vowel, makes 

this acoustic feature quite critical for word identification. The 

first work for analyzing the strength of speech formant along 

frequencies among phonemes was finished by Fant and his 

colleagues [12] based on Swedish language. Whereafter, the 

conception of “Speech Banana” was developed, which showed 

the mean frequency of the first three formants and its mean 

intensity of a phoneme by a scatterplot in audiogram, and it has 

been available for English and Mandarin Chinese [13]. 

Generally, Speech Banana for Mandarin Chinese showed that 

the intensities of consonants are lower than vowels and the 

frequency of consonants (the frequency with local maximum 

energy) are higher than the frequency of vowels (the mean 

frequency of first three formant). It’s also reported that the 

perception of consonants is harder than the perception of 

vowels, and it is easily affected by  background noise or hearing 

impairment [14]. These studies suggest that the word 
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identification within a confused pair would be dominant by the 

consonant identification, rather than by the vowel. 

Therefore, for producing the speech materials, we firstly 

selected mono-syllable pairs that have CV structure and the 

same vowel. For each pair, consonants which are easily 

confused were selected, due to their energy distribution 

showing big difference for one specific frequency (or a narrow 

frequency range). In other words, the two confused consonants 

were adjacent along frequency but separate along hearing level 

in Speech Banana. These specific frequency or frequency 

region was defined as the characteristic frequency (CF) of the 

CV syllable pair. And then disyllabic word pairs consist of these 

CV syllable pairs were produced based on the following rules: 

1) for each pair of disyllable words, one pair of confused CV 

syllable was assigned to the words, and the other syllable of the 

words were kept the same, e.g. “Ji2Zhong1 vs. Qi2Zhong1” 

(“concentrate vs. among” in English); 2) all words were 

common words in everyday life; 3) these words were assumed 

to be spondaic as two syllables of spondee were equally 

important and easy to identify. Word-pairs selected in this way 

could ensure that the only distinctive feature was concentrated 

at one certain CF. And then the wrong identification of the 

confused words can reflect the elevation of hearing threshold at 

the CF. Figure 1 shows the diagram of the whole procedure for 

the word pairs selection.   

An iOS-based application (Hearing Assistant) was 

developed and released in China Apple Store, including 

functions of PTA and speech audiometry test. The effectiveness 

of the PTA test of this application has been testified and 

reported in [15]. To evaluate the validity of the speech 

audiometry test, the results of the speech audiometry were 

compared with that of PTA test among three user groups:  

normal-hearing (NH) group, hearing-impaired (HI) group and 

the all-user (AU) group, according to the data collected from 

235 application users. 

2. Method 

2.1. Material and stimuli 

Based on the speech Banana of Mandarin Chinese, the  

consonants were divided into six groups according to their 

locations along frequency axis [13], corresponding to six CF 

regions, around 250, 500, 1k, 2k, 4k, and 6k Hz. These CFs 

were determined to be matched with the test frequencies of PTA. 

Then, thirty-six disyllabic word pairs were selected from 

Common Word List of Modern Mandarin Chinese (CWL-

MMC) [16], to produce 6 word pairs for each of the six CFs. 

These words are often common-used in daily conversation and 

their occurrence-frequencies were also balanced to ensure they 

could be equally identified when they were both audible. For 

each disyllabic word pair, their only difference is the consonant 

of the confused syllable, so the CF of syllables can also 

represent the CF the word pairs. Please notice, although there is 

one syllable the same between the two words within a pair, the 

corresponding characters of the two words can be different, 

because a syllable in Chinese Mandarin may have multiple 

meanings, which are dependent on the corresponding Chinese 

characters. These words were selected from the CWL-MMC by 

programming based on the rules above, and the output were 

checked manually.  

The 72 words (36 pairs) were spoken by a young female 

native Chinese speaker, and recorded digitally onto a computer 

disk at the sampling rate of 44.1 kHz with 24-bit quantization. 

The amplitude of each stimulus was normalized in terms of 

root-mean-square (rms) pressure. 

2.2. Implementation of iOS-based speech test 

 

The procedure of iOS-based speech test was as follows. At first, 

the listener pressed a “start” button to initial the procedure. 

Then the App began to play a random-chosen word stimulus 

through the earphone, and at the same time, the Chinese 

character of the word pair were shown on the screen. The 

listener was instructed to select the characters of the word 

he/she heard on the screen by pushing a button. The 

correct/incorrect response was accounted. Afterwards, another 

word pair was tested till the 36 pairs were all finished. Figure 2 

shows diagram of this procedure. A progressing bar indicated 

the percent that had been finished. Usually, the whole test could 

be finished in ten minutes. After the test, the speech recognition 

scores were mapped to hearing level at each CF in the 

audiogram, where a higher score corresponded to a lower 

hearing level and a lower score correspond to a higher hearing 

level. A suggestion of the hearing situation was also showed 

with text. 

Before this procedure, all users had to finish the PTA test, 

otherwise the function of speech audiometry could not be 

operated. To ensure the speech stimuli were displayed at a 

Figure 2: The illustration shows the procedure of 

speech audiometry test in the application.  

start 

randomly choose a word 

stimulus from the selected pair 
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show the characters 
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Figure 1: The illustration shows the procedure for word pairs stimuli selection.  
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comfortable level, the sound level was adjusted at 30 dB higher 

than the mean hearing threshold for each user. 

2.3. Implementation of iOS-based PTA 

The procedure of the iOS-based PTA test was as described in 

the previous work [15]. Listeners were instructed to push a 

“begin” button to initiate the test, and push the button “I heard” 

if a pure tone was heard. The ascending method introduced in 

the standard of ISO 8253-1 [17] was implemented. 

There was a preliminary calibration before the App was 

released on the App Store, and the consistency across different 

Apple devices has been testified by previous studies [15, 18]. 

These works confirmed that a relatively reliable PTA results 

could be collected from application users. Users can download 

the App from App Store and use the earphones to finish the tests 

with instruction, and there is no need for self-calibration. 

2.4. Data collection and the users 

The data used for analysis were from the 300 users who 

registered at the first five months. To ensure the reliability of 

the results, the data was prescreened by deleting some invalid 

data, which were collected from listeners who did not finish the 

whole test or did not go through the test as instructed, according 

to the following rules: 

1) If the results of a PTA test were 90 dB HL for all 

frequencies, which means the button was not pressed 

at all and the PTA test procedure was not finished 

correctly, the data of this test was thought as invalid 

and deleted. 

2) If the results of a speech test are 0 for all frequency 

range, which means the button was not pressed at all 

and the speech test procedure was not finished 

correctly, the data of this test was thought as invalid 

and deleted. 

According to the criterions above, the data of 65 users were 

deleted. The data of 235 users were remained and divided into 

two groups by calculating the mean hearing threshold averaged 

across 0.5, 1, 2, 4 kHz [19]. Please notice that some invalid data 

might be remained even following the rules above, since these 

tests were unsupervised and it was difficult to ensure the user 

finish the task in a right way. The listeners whose mean hearing 

threshold lower than or equal to 25 dB HL fell into the normal-

hearing (NH) group, and the listeners whose hearing threshold 

exceeded 25 dB HL fell into hearing-impaired (HI) group. 

Finally, there were 71 and 164 users for the NH and HL groups, 

respectively, and the valid data for the all 235 users was named 

as AU (all users). 

3. Results 

3.1. Data analysis  

The mean speech intelligibility, that is the mean score of 

speech audiometry averaged across 6 CF regions, and the mean 

hearing threshold of PTA averaged across 0.5, 1, 2, 4 kHz for 

each user are shown in Figure 3. Every circle/cross represents 

one user’s data, and circles represent the users of NH group; 

crosses represent the users of HI group. The distribution 

patterns of data are different between NH and HI groups. The 

data of NH group distribute mainly around 1 for speech 

intelligibility except some outliers, but the data distribute more 

widely along speech intelligibility for HI group. 

 

Figure 3: The scatterplot represents mean speech 

intelligibility and mean hearing threshold for all users. 

The solid line is fitted for AU group, the dot line for HI 

and the dashed line for NH group. 

A correlation analysis between the mean speech 

intelligibility and mean hearing thresholds was conducted for 

the AU, NH and HI groups, respectively. The results revealed 

that the correlation was significant for AU group (r=-0.429, 

p<0.001) and HI group (r=-0.477, p<0.001). The negative r 

values indicated that the lower mean speech intelligibility was 

relevant to the higher mean hearing threshold. These results are 

consistent with previous studies that there is correlation 

between the phoneme recognition or word recognition 

performance and PTA, especially for hearing impaired listeners 

[20]. However, the correlation is not significant for NH group 

(r=0.032, p=0.708). Because the speech audiometry is 

specifically designed for HI listeners and the task is too easy for 

the normal-hearing, it is reasonable that their performance of 

speech audiometry is mainly around 1 and not significantly 

correlated to the hearing threshold. 

When the users’ performance was analyzed for each CF, the 

hearing thresholds at 3 kHz and 8 kHz of PTA were excluded, 

as the CFs for speech audiometry could only correspond to the 

other 6 frequencies. The correlation analysis between the 

speech intelligibility and the hearing thresholds for each of the 

six CFs was conducted, separately, and the r values for three 

user groups were listed in Table 1. The “whole” means that the 

analysis was conducted with the data for the all 6 CFs. The 

values which were marked with one asterisk represent the 

correlation is significant at the 0.05 level, and the values with 

two asterisks represent the significance at 0.01 level. The results 

showed that there was significant correlation between speech 

intelligibility and hearing threshold at each frequency for both 

HI and AU group, but not for NH group. This results were 

consistent with the results based on the mean speech 

intelligibility and mean hearing threshold. The speech 

intelligibility and the hearing threshold at each CF for HI group 

are shown in Figure 4. Every data point represents one HI user’s 

data at one CF, and different symbols represent different 

frequency regions. The distribution patterns of each CF are 

similar. These results confirmed that the correlation between 

speech recognition scores and hearing thresholds was similarly 

in each CF region. For the significant correlations, the r values 

were all around -0.3, suggesting that the correlation was 
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relatively weak at all CFs and it might be not accurate enough 

to evaluate audibility quantitatively at each test frequency. 

Table 1: The correlation of speech intelligibility and 

hearing thresholds in different CF regions for AU, NH 

and HI groups.  

Frequency 

(Hz) 

R  

AU  NH HI 

250 -.335** 0.092   -.329** 

500 -.337**  0.178*  -.365** 

1000 -.340** -0.119   -.341** 

2000 -.343** 0.013   -.385** 

4000 -.282** 0.029 -.275** 

6000 -.317** 0.020 -.313** 

whole -.413** 0.046 -.316** 

**.Correlation is significant at the 0.01 level(2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

 

Figure 4: The scatterplot represents speech 

intelligibility and hearing thresholds at each CFs.  

In summary, the significant correlation between speech 

intelligibility and hearing thresholds in HI group indicated that 

the speech audiometry with the word identification test in our 

App was valid in part and can help to assess individual hearing 

abilities on smart phones. However, although the correlation 

was significant, it is mild, and further work is required to 

improve the accuracy of the speech audiometry. 

4. Discussion 

The significant correlation values between speech intelligibility 

and hearing thresholds are all lower than 0.5, indicating the use 

of speech audiometry to evaluate the loss of hearing threshold 

could not be accurate as PTA. It could be explicated from three 

aspects. 

Firstly, there is difficulty for user data’s prescreening. 

Present screening criterion could only exclude the results from 

the tests that are not response correctly entirely, while the 

results from users who might response partly incorrectly could 

not be monitored. Besides, results from the tests that were 

conducted in noisy environment might also become the outliers 

for the whole group. 

Secondly, when stimuli are disyllabic words and displayed 

without noise, the task of speech identification is still easy for 

those listeners with mild or moderate hearing impairment. For 

example, the proportion of the users who get speech 

intelligibility bigger than 0.6 is more than 90% of all the 

listeners. Hence the differences for individuals whose hearing 

impairment levels were mild or moderate were not reflected in 

the current results, and resulted into a relatively small 

correlation. In future work it is necessary to design a task whose 

difficulty could be adaptively adjusted according to listeners’ 

proceeding performance. 

Thirdly, the sound level for displaying speech stimuli was 

adjusted based on the user’s individual hearing threshold.  This 

manipulation was to ensure the listener can hear sound at a 

comfortable level individually, and to avoid the floor effect of 

speech intelligibility due to the very weak sound for HI users. 

However, this manipulation also brought in a sort of 

compensation for hearing impairment [21]. As a consequence, 

the performance of HI users was underestimated, and the 

correlation between the speech intelligibility and the hearing 

threshold was reduced. Moreover, for some subjects with mean 

hearing thresholds exceeding 40 or 50 dB HL, the stimuli level 

might induce a new problem for the speech perception 

performance, as it was reported that speech recognition scores 

could be reduced significantly with increasing sound level for 

some hearing-impaired subjects, due to loudness recruitment 

[22, 23]. It was also reported that the uncomfortable sound level 

could be high for some HI listeners [24].This individual 

difference between HI listeners was not taken into account in 

the present work.   

The word pairs used in present work were selected based on 

Speech Banana of Mandarin Chinese, in which the location of 

a consonant along frequency was determined by the frequency 

at which the maximum energy is in the spectrogram. However, 

the energy of some consonants spread in a wide frequency range, 

and some other acoustic cue, e.g. duration, could be important 

for the word identification. This issue need more detailed and 

accurate analysis in the future work, to upgrade the present 

speech audiometry. 

Listeners’ performance for speech identification depends 

on several factors, including hearing threshold, frequency 

resolution and time resolution of auditory processing, and even 

high-level cognitive processing. It is important to discriminate 

the effects of these factors when speech audiometry is used to 

evaluate hearing impairment. Future work is required to use 

more suitable speech stimuli and more efficient test procedure 

for applying speech audiometry on smartphones. 

5. Conclusions 

A new iOS-based speech audiometry was produced, and the 

hearing impairment at 6 frequency regions (250-6000 Hz) 

could be evaluated by the identification of 36 confused 

disyllabic-word-pairs for people speaking Mandarin Chinese. 

The validity of this speech audiometry was analyzed by 

comparing with PTA based on 235 users. The results showed 

that the speech intelligibility has significant correlation with 

hearing threshold for hearing-impaired listeners but no 

remarkable correlation for normal-hearing listeners for each 

frequency region.  
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Abstract
Speaker identification is still challenging issue for cochlear im-
plant (CI) users due to the poor spectral cue provided by the CI
device. To optimize CI systems for the users, it is important
to understand the role of temporal modulation cues in speaker
identification, as the CI device provides temporal modulation
cues as primary cues. This study investigates the relative con-
tributions of spectral and temporal cue on speaker identification
by using noise-vocoded speech (NVS) as a CI simulation. In
the experiment, speaker identification was conducted in normal-
hearing listeners as a function of the number of channels (4, 8,
and 16) and upper limitation of envelope frequency (0, 0.5, 1, 2,
4, 8, 16, 32, and 64 Hz) in NVS. The number of channels and
upper limitation of envelope frequency present the spectral and
temporal resolution of NVS separately. Results showed that the
performance of speaker identification was not affected by spec-
tral resolution significantly, at least in the limited set of stimuli
in the present study. In addition, the results also showed that
the performance was more sensitive to temporal resolution. It is
suggested that temporal modulation cues contribute to speaker
identification and have the potential to improve speaker identi-
fication if enhanced.
Index Terms: temporal modulation cue, speaker identification,
noise-vocoded speech, cochlear implant

1. Introduction
The temporal envelope of speech has been proved to be an im-
portant cue in perceiving linguistic information included in the
speech. Shannon et al. showed that the presentation of a dy-
namic temporal pattern in only a few broad spectral regions is
sufficient for listeners to the recognize of linguistic information
[1]. The modulation frequency bands from 4 to 16 Hz have been
shown to be important regions in speech recognition [2]. Also,
cochlear-implant (CI) users can achieved good performance in
speech recognition, as the CI device can provide sufficient tem-
poral cues. However, human speech includes not only linguistic
information, but also nonlinguistic information such as speaker
individuality. CI users cannot accurately identify speakers as
the CI device provides poor spectral cues [3].

To optimize CI systems for their users, the role of temporal
modulation cues in speaker identification must be understood. It
is necessary to know which aspects of the temporal modulation
cues have the potential to improve speaker identification if en-
hanced. Luo and Fu successfully enhanced the tone recognition
on the NVS scheme by manipulating the amplitude envelope to
more closely resemble the F0 contour [4]. Their results showed
the possibility of enhancing the recognition of nonlinguistic in-
formation by modifying the temporal envelope.

Traditional research about speaker identification by humans
has focused on spectral cues based on speech production. The

formant frequencies have been found to carry not only informa-
tion about vowels but also information regarding speaker indi-
viduality [5]. Kitamura et al. indicated that speaker individu-
ality exists mainly in the frequency bands higher than 2212 Hz
of the speech spectral envelope [6]. The fundamental frequency
contours are also shown to be important cues in speaker iden-
tification [7]. Generally, the speaker individualities related to
fundamental frequency and spectral envelope can be thought of
as results of the individual differences of vocal organs. Unfortu-
nately, current CI devices cannot encode the spectral and funda-
mental frequency information of speech sufficiently for speaker
identification.

As CI listeners using the temporal envelope of speech as
a primary cue, Vongphoe and Zeng evaluated whether tempo-
ral cues are sufficient to support both speech recognition and
speaker identification [3]. Their results showed a disassociation
between speech and speaker recognition using primarily tem-
poral cues: CI users performed well at vowel recognition but
poorly at speaker recognition. On the other hand, Gonzalez and
Oliver investigated speaker identification as a function of the
number of channels in both noise and sin-wave vocoded speech
as CI simulations [8]. The performance of speaker identifica-
tion was shown to be poorer with fewer number of channels
of noise-vocoded speech (NVS). However, Krull et al. showed
that training resulted in improved identification of speakers in
CI simulations [9]. Moreover, child CI users succeeded in dif-
ferentiating their mothers’ utterances from those of other peo-
ple [10]. CI users’s differentiation of speakers was facilitated
by long-term familiarity. It is suggested that the temporal mod-
ulation information has possibility to be an effective cue for CI
users to distinguish speakers.

In a previous study, the relative contributions of spectral and
temporal cues in vocal emotion recognition for NVS is clarified
by varying the the number of channels and upper limitation of
envelope frequency systematically [11]. As the result, the tem-
poral resolution of NVS affected the vocal emotion recognition
significantly. Moreover, we examined word and speaker recog-
nition using NVS while systematically varying the upper limit
of the modulation frequency [12]. The results suggested that
the temporal resolution of NVS should contribute to the speaker
recognition. However, the role of temporal cues in speaker iden-
tification is still unknown.

This paper aims to clarify the role of temporal cues in
speaker identification with NVS as a CI simulation. In the
experiment, speaker identification was conducted by normal-
hearing listeners as a function of the number of channels (4, 8,
and 16) and upper limitation of envelope frequency (0, 0.5, 1,
2, 4, 8, 16, 32, and 64 Hz) in NVS. The number of channels
and upper limitation of envelope frequency present the spectral
and temporal resolutions of NVS separately. The experimental
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Figure 1: Signal processing method for noise-vocoded speech. BPF: bandpass filter; LPF: low-pass filter; NBN: narrow-band noise

paradigm used in this study can clarify the important modula-
tion frequency band for speaker identification. The potential to
improve speaker identification by enhance the temporal modu-
lation cues is then discussed.

2. Speech data and signal processing
2.1. Speech data

The speech data used in this study were selected from the ATR
Japanese speech database set C and recorded at a 20 kHz sam-
pling frequency. Each sentence was uttered for about 4 to 5
seconds.

In this study, the XAB method was used in the speaker iden-
tification experiment. In the XAB method, one trial consists of
three different speech signals (X, A, and B). The speakers of
A and B are different, and the speaker of X is also the speaker
of either A or B. Participants are asked to select which speaker,
A or B, is more similar to the speaker of X. It is assumed that
the similarity of a speaker pair will affect the results of experi-
ment. The speaker pair with high similarity may be difficult to
be distinguish, even when the spectral and temporal cues were
preserved. On the contrary, the speaker pair with low similar-
ity may be still easy to be distinguish, even if the cues related
to speaker identification were reduced. This kind of bias is not
desirable.

Kitamura et al. measured the perceptual similarity of
speaker individualities of 20 female and 20 male Japanese
speakers in ATR speech database set C [13]. Two same sen-
tences with different speakers were presented to normal-hearing
listeners, and the listeners were asked to select the similarity of
these two speakers from 1 to 5. The perceptual similarity of
speakers is considerable to generate some undesirable bias in
the XAB test. Therefore, in order to remove the impact of sim-
ilarity, the speaker pairs of speech data used in this study have
perceptual similarity closest to the average value of perceptual
similarity (female: 1.87, and male: 1.99) measured by Kitamura
et al. [13]. The 5 female and 5 male speaker pairs used in this
study and their perceptual similarities are shown in Table 1. All
20 speakers are different and the speakers of each pair have the
same gender. 6 sentences of each speaker were used to generate
the NVS stimuli.

2.2. Signal processing

Figure 1 schematically illustrates a schematic diagram of the
signal processing to generate NVS. First, to reduce the effect
of the average intensity, the active speech levels of all speech
signals were normalized to −26 dBov by using the P.56 speech

Table 1: Speaker pairs selected from ATR database and their
average similarity index measured by Kitamura et al. [13]. Left
and right halves show female and male speaker pairs, respec-
tively.

Speaker pair Similarity Speaker pair Similarity
F407 F306 1.87 M509 M318 1.99
F611 F418 1.86 M603 M409 1.98
F606 F605 1.875 M508 M113 2.00
F720 F213 1.88 M519 M211 2.01
F709 F614 1.83 M520 M517 1.97

voltmeter [14]. Speech signal was first divided into several fre-
quency bands with a band-pass filterbank. The bandwidth and
boundary frequencies of the band-pass filters (6th-order Butter-
worth Infinite Impulse Response (IIR) filter) were defined using
ERBN (Equivalent Rectangular Bandwidth) and ERBN-number
scale [15]. The ERBN-number scale is comparable to a scale
of distance along the basilar membrane so that the frequency
resolution of the auditory system can be faithfully replicated
by dividing frequency bands in accordance with the ERBN-
number. The relationship between ERBN-number and acoustic
frequency is defined as follows:

ERBN − number = 21.4log10

(
4.37f

1000
+ 1

)
(1)

where f is acoustic frequency in Hz. The boundary frequen-
cies of the band-pass filters were defined from 3 to 35 ERBN-
number with bandwidth as 2, 4, or 8 ERBN. Therefore, the
numbers of channels of the band-pass filterbank were 16, 8, or
4. The number of channels presents the frequency resolution of
NVS: higher frequency resolution is obtained with more num-
ber of channels.

Then, the temporal envelope of the output signal from each
band-pass filter was extracted by using a Hilbert transformation
and performing a low-pass filter (2nd-order Butterworth IIR fil-
ter). The cut-off frequency of the low-pass filter determined the
upper limit of envelope frequency that presents the temporal
resolution of NVS. To investigate the role of temporal envelope
cues for speaker identification, the conditions of the cut-off fre-
quencies of the low-pass filter were 0.5, 1, 2, 4, 8, 16, 32, and 64
Hz. Moreover, there was an additional “0” Hz condition where
only the direct current component of the Hilbert envelope was
extracted.

Finally, the temporal envelope in each channel served to
amplitude modulation with the band-limited noise which was
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generated by band-pass filtering white noise at the same bound-
ary frequency. All amplitude-modulated band-limited noises
were summed to generate the NVS stimulus. The NVS was
widely used as a CI simulation, as the spectral cues of speech
were reduced.

3. Experimental procedure
Nine native Japanese speakers (two female and seven male) par-
ticipated in this experiment. All participants had normal hear-
ing (hearing losses of the participants were below 12 dB in the
frequency range from 125 to 8000 Hz).

This experiment was carried out by using the XAB method.
One trial consisted of three different speech signals (X, A, and
B). The contents of stimuli X, A, and B were as follows:

• X: Noise-vocoded speech

• A: Noise-vocoded speech with the same speaker as X

• B: Noise-vocoded speech with a different speaker from
X.

Participants were asked to compare the speakers of A and B
with the speaker of X to select which speaker was more similar
to the speaker of first speech X. Both stimulus with XAB and
XBA orders were presented to counterbalance any effects due
to the order of presentation. All the speaker pairs of A and B
are shown in the Table 1.

A total of 3 different number of channels (4, 8, and 16)
and 9 upper limits of envelope frequency (0, 0.5, 1, 2, 4, 8,
16, 32, and 64 Hz) created 18 NVS conditions. The original
speech was also presented as a control condition. The partici-
pants were allowed to listen to each stimulus only once. Before
the experiment, 10 stimuli were presented to the participants to
familiarize participants with the CI simulation and the experi-
mental environment. The stimuli used in the experiment were
different from that used in the practice. The number of stimuli
was 560 and all stimuli were presented totally randomized.

The experiment was conducted while the participants were
in a sound-proof room. The sound pressure level of background
noise was lower than 25.8 dB. The stimuli were simultane-
ously presented to both ears of a participant through a PC, au-
dio interface (RME, Fireface UCX), and a set of headphones
(SENNHEISER HDA 200). The sound pressure levels were
calibrated to be the same among participants by using a head
and torso simulator (B&K, type 4128) and sound level meter
(B&K type 2231).

4. Results
Figure 2 shows the average value of speaker recognition rates,
and the error bars indicate ±1 standard error of the mean. Under
the original speech condition, the recognition rate was close to
95 %. Participants performed nearly perfectly in speaker iden-
tification with the original speech. The results of NVS stimuli
showed that the performance of speaker identification improved
as the upper limit of envelope frequency increased. The results
for 4-band NVS were lower than 8 or 16-band NVS at some
upper limits of envelope frequency. However, the performance
was not obviously affected by the number of channels.

A repeated-measures analysis of variance (ANOVA) was
conducted on the results with the number of channels and up-
per limit of envelope frequency as the factors. It is confirmed
that there was a significant main effect of the upper limit of
envelope frequency (F (8, 64) = 23.8631, p < 0.01). How-
ever, there was no significant main effect of the number of
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Figure 2: Speaker recognition rates in all 27 NVS conditions
and original speech condition. Error bars indicate ±1 standard
error of the mean.

bands (F (2, 16) = 3.3230, p = 0.29) and there was also no
significant interaction between the two factors (F (16, 128) =
1.1608, p = 0.16). These results showed that the performance
of speaker identification was significantly affected by the tem-
poral resolution, which suggest that temporal modulation cues
contribute to speaker identification. The performance was less
sensitive to the spectral resolution, however, at least in the lim-
ited set of stimuli in the present study.

5. Discussion
5.1. Effect of spectral resolution

The speaker identification rates of 4-band NVS are lower in
some conditions of the upper limit of envelope frequency. How-
ever, the number of channels did not affect the performance of
speaker identification significantly. These results were different
from the results of previous studies in which the performance
was improved as the number of channels increased [3][8]. One
difference between the present study and previous studies is that
the upper limit of envelope frequencies in this study was lower.
In previous studies, the cut-off frequencies of the low-pass fil-
ter were 500 Hz [3] and 160 or 400 Hz [8]. The modulation
frequency bands between about 50 and 500 Hz are related to
the periodicity information about fundamental frequency [16],
which is not included in the stimuli used in the present study.
One possible explanation may be that the temporal cues related
to the periodicity information in higher modulation frequency
bands are more sensitive to the number of channels. The main
target of this study is to clarify the role of temporal cues in lower
modulation frequency bands that include the information about
variations of intensity, duration, attack, decay, and segmental
cues of speech.

5.2. Effect of upper limit of envelope frequency

This study is intended to clarify the role of temporal modulation
cues in speaker identification. Specifically, the important mod-
ulation frequency bands for speaker identification are investi-
gated. To identify the important modulation frequency bands, a
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Figure 3: Speaker recognition rates in each condition of number of channels and their sigmoid fitting lines.

sigmoid function was used to fit the data of the experiment. The
sigmoid function was mathematically defined as follows:

y =
a

1 + eb(x−c)
+ d (2)

where x is the upper limit of envelope frequency and y is the
percent-correct scores. The parameters a, b, c, and d were cal-
culated on the basis of the method of least squares. Moreover,
the upper limit of envelope frequency at which 90% of the per-
formance plateau was defined as a knee point. The results of
fitting lines and knee points of each condition of the number of
channels are shown in Fig. 3. The coefficients of determina-
tions R2 of the fitting results in 4, 8, and 16-band NVS were
0.86, 0.95, and 0.93.

The knee point of 4-band NVS was about 20.09 Hz which
was higher than those of 8-band NVS (4.96 Hz) and 16-band
NVS (7.60 Hz) . As the spectral cues provided by 4-band NVS
was poor, participants may primarily use the temporal modu-
lation cues to recognize the speaker rather than spectral cues.
However, it still should be mentioned that there was no signifi-
cant interaction between the number of channels and the upper
limit of envelope frequency. More Xu and Pfingst measured
both consonant and vowel recognition as a function of the num-
ber of channels (1 to 16) and upper limit of envelope frequency
(1 to 512) [17]. The knee points of vowel recognition in dif-
ferent numbers of channels conditions are all below about 4
Hz. The knee points of consonant recognition are from 4 to
16 Hz, which are closer to the knee points for speaker identi-
fication in this study. Tachibana et al. conducted a experiment
of NVS sentence recognition with various of upper limits of
envelope frequency [18]. They found that an increase in the up-
per limit of envelope frequency from 4 to 8 Hz improved the
correct response rate more that increasing the upper limit of en-
velope frequency from 8 to 16 Hz. Both studies showed that the
duration and segmental cues included in such modulation fre-
quency band below about 16 Hz are important in the perception
of linguistic information. In this study, these duration and seg-
mental cues of the temporal envelope are also suggested to be
used in speaker identification. These segmental cues related to
the rhythm, tempo, and the speaking style of the speaker which
should be different with different speakers.

The results of this paper have shown that the temporal mod-
ulation cues contribute to speaker identification and that the
temporal modulation information below about 20 Hz seems to
be important. In the future, the modulation spectral features
[19] related to speaker individuality and the effect of modify-
ing such modulation spectral on speaker identification will be
investigated. In a previous study, we confirmed that the vocal
emotion of NVS can be converted by modifying the modulation
spectrogram of temporal envelope [20]. Whether the speaker in-
dividuality information of NVS can be converted by modifying
the modulation spectrogram should also be discussed further.

6. Summary

This study aimed to clarify the role of temporal cues in speaker
identification with noise-vocoded speech (NVS) as a cochlear
implant (CI) simulation. Speaker identification was conducted
by normal-hearing listeners as a function of the number of chan-
nels (4, 8, and 16) and the upper limitation of envelope fre-
quency (0, 0.5, 1, 2, 4, 8, 16, 32, and 64 Hz) in NVS. The result
showed that speaker identification rates improved significantly
as the upper limit of envelope frequency increased. However,
the performance was not obviously affected by the number of
channels. The modulation frequency bands below about 20 Hz
were shown to be important in speaker identification with 4-
band NVS. In conclusion, it is suggested that temporal mod-
ulation cues contribute to speaker identification and have the
potential to improve speaker identification if enhanced. It is
important to understand not only which parts but also exactly
what kinds of features of temporal envelope have possibility to
be important cues for speaker identification.
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Better hearing in noise with binaural prostheses inspired by the contralateral
medial olivocochlear reflex

Enrique A. Lopez-Poveda

University of Salamanca, Salamanca, Spain

Abstract
In natural hearing, cochlear mechanical compression is dy-
namically adjusted via the medial olivocochlear efferent re-
flex (MOCR). These adjustments probably help understanding
speech in noisy environments and are not available to the users
of cochlear implants (CIs). I will present a bilateral CI sound
processing strategy that reinstates the effects of the contralat-
eral MOCR to CI users using frequency-specific, contralater-
ally controlled dynamic compression. The new strategy sig-
nificantly facilitates understanding speech in competition with
noise in bilateral and unilateral listening conditions, and en-
hances spatial release from masking. The strategy may be use-
fully applied in hearing prostheses.

Further details may found in Lopez-Poveda et al. (2016) Ear
& Hearing 37(3):e138–e148, and Lopez-Poveda et al. (2017)
Hearing Research 348:134–137. Work funded by MINECO
(ref. BFU2015-65376-P), FEDER, and MED-EL GmbH.
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Perceptual contribution of fundamental frequency contour and its implication
to assistive hearing devices for Chinese-speaking hearing-impaired users

Fei Chen

Southern University of Science and Technology, China

Abstract
For Chinese speech perception, tonal information mainly car-
ried by fundamental frequency (F0) contour plays an impor-
tant role to lexical tone identification. Recent work showed that
for Mandarin sentence recognition at ideal listening conditions
(e.g., in quiet), the distortion of F0 contour can be compensated
by other contextual cues, and hence F0 contour may be treated
as relatively redundant cue for Mandarin sentence intelligibil-
ity in quiet. However, at adverse listening conditions (e.g., in
noise), tone contour is important for the recognition of Man-
darin sentences. The present work assessed the contribution of
F0 contour to Mandarin speech perception simulating two sce-
narios of 1) high-frequency hearing loss and 2) understanding
frequency-compressed speech.

In Experiment 1, the wideband Mandarin speech was first
processed to have a flat F0 contour, and then low-passed filtered,
which simulated the high-frequency hearing loss. In Experi-
ment 2, the F0-flattened Mandarin sentences were processed by
a non-linear frequency compression strategy, which compressed
the spectral information up to 700 Hz to 500 Hz (Chen and
Chan, JASA, 2016). The processed stimuli were presented to
normal-hearing Mandarin-speaking listeners to recognize, and
the intelligibility scores were compared with those of counter-
part conditions with normal F0 contour.

Results showed that flattening F0 contour significantly re-
duced the intelligibility of low-pass filtered and frequency-
compressed Mandarin speech, compared with conditions with
normal F0 contour. This indicates the importance of preserv-
ing F0 contour for Mandarin speech perception in conditions
of high-frequency hearing loss and designing assistive hearing
techniques (e.g., frequency compression) for Chinese-speaking
hearing-impaired users.
Index Terms: Chinese speech perception; fundamental fre-
quency contour; assistive hearing devices; frequency compres-
sion
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Towards Next-Generation Lip-Reading Driven Hearing-Aids: A preliminary
Prototype Demo

Ahsan Adeel, Mandar Gogate, Amir Hussain

Department of Computing Science and Mathematics, Faculty of Natural Sciences, University of
Stirling, UK

E-mail: {aad, mgo, ahu}@cs.stir.ac.uk

Abstract

Speech enhancement aims to enhance the perceived speech
quality and intelligibility in the presence of noise. Classical
speech enhancement methods are mainly based on audio only
processing which often perform poorly in adverse conditions,
where overwhelming noise is present. This paper presents an
interactive prototype demo, as part of a disruptive cognitively-
inspired multimodal hearing-aid being researched and devel-
oped at Stirling, as part of an EPSRC funded project (COG-
AVHEAR). The proposed technology contextually utilizes and
integrates multimodal cues such as lip-reading, facial expres-
sions, gestures, and noisy audio, to further enhance the qual-
ity and intelligibility of the noise-filtered speech signal. How-
ever, the preliminary work presented in this paper has used
only lip-reading and noisy audio. Lip-reading driven deep
learning algorithms are exploited to learn noisy audio-visual
to clean audio mappings, leading to enhanced Weiner filtering
for more effective noise cancellation. The term context-aware
signifies the device’s learning and adaptable capabilities, which
could be exploited in a wide-range of real-world applications,
ranging from hearing-aids, listening devices, cochlear implants
and telecommunications, to need for ear defenders in extreme
noisy environments. Hearing-impaired users could experience
more intelligible speech by contextually learning and switch-
ing between audio and visual cues. The preliminary interac-
tive Demo employs randomly selected, real noisy speech videos
from YouTube to qualitatively benchmark the performance of
the proposed contextual audio-visual approach against a state-
of-the-art deep learning based audio-only speech enhancement
method.
Index Terms: Speech Enhancement, Cognitively-Inspired,
Multimodal, Lip-Reading, Sentiment Features, Deep Learning

1. Introduction
The extensive speech enhancement requirement in wide-range
of real-world applications and the advent of advanced signal
processing methods have opened new ways to explore and de-
velop more efficient and advanced speech processing technolo-
gies. Over the past few decades, several speech enhancement
methods have been proposed, ranging from the state-of-the-art
statistical, analytical, and classical optimization approaches, to
advanced deep learning based methods. The classic speech en-
hancement methods are mainly based on audio only process-
ing [1][2][3][4]. Recently, researchers have also proposed deep
learning based advanced speech recognition [5] and enhance-
ment [6] methods. However, most of the speech enhance-
ment methods are based on single channel (audio only) process-
ing, which often perform poorly in adverse conditions [7]. In
this research, we aim to leverage the audio-visual (AV) nature

of speech which is inherently multimodal and capable of im-
proving intelligibility in noise [8][9][10] [11][12][13] and have
modelled lip-reading as a regression problem for speech en-
hancement. Specifically, we envision developing a multimodal
hearing device that significantly improves both speech quality
and intelligibility in everyday and extreme listening environ-
ments.
The inherent multimodal nature of the speech is well estab-
lished in the literature and it is well understood that how speech
is produced by the vibration of vocal chords with respect to
the articulatory organs configuration. The correlation between
the articulatory organs (visible properties) and speech has been
shown in several ways in literature using biological, psycholog-
ical, and mathematical experiments [8][11][10][14]. Therefore,
the clear visibility of some of the articulatory organs such as
lips, teeth, and tongue could be effectively utilized to extract the
clean speech out of the noisy audio signal. In addition, the vi-
sual features such as facial expressions and body language also
play a vital role in speech perception. The major advantage of
using visual cues for generating clean audio feature is their nat-
ural noise immunity (i.e. visual speech representation always
remains unaffected by the acoustic noise) [15].
In the literature, most of the proposed lip-reading approaches
have modelled lip-reading as a classification problem for speech
recognition. However, limited work has been conducted to
model lip-reading as a regression problem for speech en-
hancement. In this research, we envision cognitively-inspired,
context-aware multimodal speech processing technology based
on lip-reading regression model. The technology is aimed at
helping users in noisy environments, by contextually learning
and switching between audio and visual cues. The initial aim
of this research is to develop a proof of concept prototype of
the audio-visual hearing-aid technology. An early prototype
demo has been developed for online evaluation and feedback.
The prototype demo is benchmarked against the state-of-the-
art audio-only approach (reported in IEEE Spectrum Magazine
2017) that applied cutting-edge machine learning based on deep
neural networks [16]. The preliminary objective and subjec-
tive testing has revealed the potential and reliability of the pro-
posed technology as compared to the state-of-the-art audio only
speech enhancement techniques.
The rest of the paper is organized as follows: Section II presents
an overview of the proposed context-aware multimodal speech
processing technology, including multimodal feature extraction,
audiovisual mapping, and noisy audio filtering methods. Sec-
tion III presents the qualitative speech enhancement testing of
the proposed technology. Finally, Section IV concludes this
work.
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2. Proposed Next-Generation
Context-Aware Multimodal Technology

The proposed novel cognitively-inspired, multimodal approach
aims to contextually exploit and integrates multimodal cues,
such as lip-reading and audio features. The term context-
aware signifies the technology’s contextual learning and adapt-
able capabilities, which can be employed in next-generation
multi-modal applications, including assistive technology such
as hearing-aids, cochlear implants, and listening devices. The
disruptive technology is capable of contextually enhancing
speech intelligibility in extreme noisy environments, so can also
be useful for users in situations where ear defenders are worn,
such as emergency and disaster response and battlefield envi-
ronments. In applications such as teleconferencing, video sig-
nals could be used to filter and enhance acoustic signals arriv-
ing at the receiver-end. People with visual impairment who are
unable to see visual cues can also benefit from the proposed
technology, particularly in emergency situations. Preliminary
simulation results, including an interactive online prototype,
demonstrate the potential of the proposed multimodal speech
enhancement technology for enabling transformative applica-
tions in extreme environments. An abstracted processing of the
proposed technology is depicted in Fig. 1, where the multi-
modal (audio-visual) system has integrated the aforementioned
cues for speech processing. The proposed (audio-visual) system
extracts the available multimodal features contextually to esti-
mate the clean audio features and then exploits them for real-
time speech enhancement. More technical details are compre-
hensively presented in [17]

2.1. Dataset

For preliminary analysis, the widely used Grid [18] and CHiME
corpuses [19] are used to extract lip-reading and noisy audio
features. The visual features are extracted using Grid Corpus,
whereas CHiME2 is used for extracting audio features. The
work could easily be extended to include other visual features
such as gestures, facial expressions, body language etc., which
is a part of future work and will be presented in upcoming pub-
lications. From both the corpuses, an audiovisual (AV) dataset
is built by preprocessing the utterances and extracting the au-
dio and visual features. The preprocessing includes sentence
alignment and incorporation of prior visual frames. The sen-
tence alignment is used to remove the silence time from the
video to restrict the model from learning redundant or insignifi-
cant information. The sentence alignment process enforced the
model to learn the correlation between the spoken word and
corresponding visual representation, rather than over learning
the silence. Secondly, the prior visual frames are used to in-
corporate the temporal information, which ultimately helped
the learning engine to better correlate the visual features to
corresponding speech features. The audio and visual features
extraction procedure is shown in Fig. 2. The audio feature
extraction procedure includes sampling, segmentation, Ham-
ming windowing, Fourier transformation, and FB audio features
calculation. The visual feature (lip-reading) extraction proce-
dure includes frames extraction, viola-jones lip detector, object
tracker, lip cropping, 2D-DCT/convoluted features. Once the
dataset is built, it could then be fed into a deep learning model
such as LSTM to learn the correlation between audio and visual
features.

2.2. Multimodal Features Extraction

2.2.1. Audio Features

The audio features are extracted using the widely used log-
filterbank (FB) vectors and Mel-frequency cepstral coefficients
(MFCC). The input audio signal is sampled at 50kHz and seg-
mented into N 16ms frames with 800 samples per frame and
62.5% increment rate. Afterwards, a Hamming window and
Fourier transformation are applied to produce 2048-bin power
spectrum. Finally, a 23-dimensional log-FB is applied, followed
by the logarithmic compression to produce 23-D log-FB signal.
For MFCC calculation, DCT of the log-auditory-spectrum is
obtained.

2.2.2. Visual Features

The visual features include only lip movements in this prelimi-
nary work. The lip movement features are extracted using 2D-
DCT based standard and widely used visual feature extraction
method. Firstly, the video files are processed to extract a se-
quence of individual frames. Secondly, the Viola-Jones lip de-
tector [20] is used to identify the Region-of-Interest (ROI) in
terms of a bounding box. Finally, the object tracker [21] is used
to track the lip regions across the sequence of frames. The vi-
sual extraction procedure produced a set of corner points for
each frame, where the lip regions are then extracted by crop-
ping the raw image for desired visual features, followed by 2D-
DCT calculation. More details are comprehensively presented
in [22].

2.3. Audiovisual Mapping and Clean Audio Features Esti-
mation

For successful implementation of the proposed technology, one
of the essential steps include the estimation of clean audio
power spectrum (i.e. audiovisual speech mapping). The au-
diovisual speech mapping aims to approximate the audio fea-
tures given only visual information. In the proposed approach,
multimodal features (i.e. lip movements) are mapped to the
clean audio features using long-short-term memory network.
Once the deep learning models are successfully trained and val-
idated, the model predicts the audio log-FB vectors given only
the noisy audio and visual features, which are then exploited
by the proposed noisy speech filtering framework for speech
enhancement. More detail on AV mapping is comprehensively
presented in [22], where multilayer perceptron (MLP) was used
for AV mapping.

2.4. Enhanced visually derived Wiener filtering

In signal processing, Wiener Filter is the state-of-the-art filter
that helps to produce an estimate of a clean audio signal by lin-
ear time-invariant (LTI) filtering of an observed noisy audio sig-
nal. In the proposed approach, an enhanced visually derived
Wiener filtering (EVWF) for speech enhancement has been
used. The EVWF effectively exploited the estimated low di-
mensional clean audio features (through lip-reading) to estimate
the high dimensional clean audio power spectrum. Specifically,
the EVWF transformed the estimated low dimensional clean au-
dio features into high dimensional clean audio power spectrum
using inverse FB transformation. Afterwards, the Wiener filter
is calculated (using the estimated audio features) and applied
to the magnitude spectrum of the noisy input audio signal, fol-
lowed by the inverse fast Fourier transform (IFFT), overlap, and
combining processes to produce the enhanced magnitude spec-

Proc. of the 1st Int. Conference on Challenges in Hearing Assistive Technology (CHAT-17), Stockholm, Sweden, August 19, 2017

62



Figure 1: Prototype Demo: Lip-reading driven deep learning approach for speech enhancement: The device is capable of helping users
in noisy environments to experience intelligible clean speech, by contextually learning and switching between audio and visual cues.
Audio cues include noisy speech only, whereas visual cues include lip movements.

Figure 2: Audio-Visual Dataset Generation Procedure

trum.

3. Qualitative Speech Enhancement Testing

The speech enhancement quality of the proposed technology
is tested by feeding the randomly selected, real noisy speech
videos from YouTube, into the audio-visual speech enhance-
ment system. In the online Demo, the user can listen to the
noisy audio, by clicking the PLAY NOISY SPEECH button.

The visually-enhanced/estimated speech can be perceived by
clicking the PROCESS & PLAY ESTIMATED SPEECH but-
ton. Users can also get a sneak pre-view of behind the scene
speech enhancement processing, by clicking individual process-
ing components, such as lip-reading, visual feature extraction,
and noisy audio features extraction. The preliminary interactive
Demo and the processed multimodal speech demonstrates the
potential of context-aware audio-visual hearing-aids, based on
big data and deep learning technology.
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The second part of the Demo invites listeners to quali-
tatively compare the new audio-visual approach with a latest
audio-only, deep learning benchmark system, recently reported
in the IEEE Spectrum Magazine, 2017 [16]. The authors in [16]
proposed a DNN-based supervised speech segregation system.
The samples of speech before and after enhancement are avail-
able at (http : //cogbid.cs.stir.ac.uk/cogavhearingdemo)
for both DNN-based supervised speech segregation and our pro-
posed multimodal approach. The demo has also demonstrated
that how the hearing-aid users perceive the speech. In the sam-
ple speech utterances, the proposed multimodal approach has
shown better and consistent speech enhancement as compared
to the DNN-based supervised speech segregation system. In ad-
dition, the proposed multimodal system has recovered both the
pitch and clean speech as compared to the DNN-based super-
vised speech segregation approach, preserving the naturalness
of the speech among male/female/infant voices.

4. Conclusion and Future Work
In this paper, an interactive prototype demo is presented as part
of a disruptive cognitively-inspired multimodal speech process-
ing technology. In the online demo, the preliminary speech
enhancement results and comparisons with the state-of-the-art
deep learning based audio-only method have demonstrated the
potential and reliability of the proposed speech processing tech-
nology. We believe that the disruptive technology is capable
of contextually enhancing speech intelligibility in everyday life
and even in extreme noisy environments such as emergency and
disaster response, and battlefield environments. In addition, the
technology could also be utilized in applications such as tele-
conferencing, where video signals could be used to filter and
enhance acoustic signals arriving at the receiver-end. In future,
we intend to investigate the performance of the proposed speech
processing technology in more realistic real-world scenarios.
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Abstract 

Sound signals provide a great deal of information about their 

sound sources. However, deaf and hard-of-hearing people are 

not able to access this important information. Therefore, an 

assistive technology is required that automatically recognizes 

sound information and converts it into usable information for 

hearing-impaired people. In this paper, a home environmental 

sound alert system for deaf and hard-of-hearing users is 

presented. The system detects the sound generated in the home 

environment, converts the sound into text, and provides this 

text to the user. The core component of the environmental 

sound alert system is an accurate sound event detection 

mechanism. For precise sound event detection, we proposed 

an improvement method including signal estimation, channel 

selection, and a bidirectional gated recurrent neural network. 

Index Terms: environmental sound alert, sound event 

detection, wireless sensor network, gated recurrent neural 

network 

1. Introduction 

Sensory abilities such as vision and hearing are very important 

in human life. In particular, certain information in our society 

usually depends on communication via sound. This social 

practice renders important information inaccessible to many 

deaf and hard-of-hearing people [1]. Therefore, to provide 

hearing-impaired people with information about sound, 

different assistive technologies have been developed. For 

instance, the light system that flash the light when somebody 

rings the doorbell is one of the representative assistant 

infrastructures. However, such approaches are only targeted to 

specific events and they are ineffective when multiple sound 

events are generated at the same time.  

In this paper, we propose a home environmental sound 

alert for deaf and hard-of-hearing people based on sound event 

detection (SED). The proposed system is composed of a 

wireless sensor network (WSN) and the user’s smart device. 

The environmental sound alert system needs to detect and 

recognize sound events accurately in various situations in real 

life. Therefore, we also proposed a method to improve the 

performance of the SED of the proposed system. The 

proposed method is comprised of signal estimation, channel 

selection, and a bidirectional gated recurrent neural network 

(GRNN) [2]. However, even if a high-performance SED is 

applied, detection errors can occur due to various external 

factors. In order to minimize the risk caused by these errors, 

the proposed system provides both the event detection results 

and their probabilities.  

The outline of this paper is as follows. In Section 2, the 

proposed system and the detail of the SED method are 

explained. Experimental results are presented in Section 3 and 

conclusions are given in Section 4. 

2. Proposed System 

Fig. 1 schematically illustrates the proposed environmental 

sound alert system based on SED.  

 

 

Figure 1: Schematic illustration of the proposed 

system. 

The wireless sensor nodes (SNs) can simultaneously 

capture sounds generated in a room. Each SN is equipped with 

a single microphone. The microphone at each SN receives 

mixed or polyphonic sounds. The recorded mixed sounds are 

encoded and transmitted via sound packets to the sink through 

networks with wireless links that are associated with packet 

loss. When each microphone packet arrives at the sink via the 

wireless networks, it is decoded into a signal frame. Lost 

packets are recovered by packet loss concealment in signal 

estimation (SE).  

Then, a set of microphones of which the signals are the 

most highly correlated with each other are chosen among the 

multi-channel microphones to increase computational 

efficiency and achieve better performance. In this paper, we 

used a signal-based channel selection (CS) method using a 

multi-channel cross-correlation coefficient (MCCC) [3]. The 

basic concept of this approach is to treat the channel that is 

uncorrelated with the other channels as being unreliable and to 

select only a subset of microphones with the most correlated 

signals. 

After CS, the signals of the selected two-channels are then 

used for environmental SED. Motivated by the human 
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auditory system (using two ears), we extracted a noise-reduced 

spectrogram and time difference of arrival (TDOA) [4] from 

the two-channel audio information. The features were used as 

high-resolution spectral inputs to train the bidirectional GRNN 

(BGRNN). The BGRNN is one of the most recent neural 

networks, and demonstrates good performance in sequence 

modeling. It provides a fast and stable convergence rate 

compared to the long short-term memory recurrent neural 

networks (LSTM-RNN). 

Detected sound event labels and probabilities are sent to 

the user device. This information is sorted in the order of 

highest to lowest accuracy and converted to text. The vibration 

for notification is also generated. The user is then notified with 

a vibration and text notification letting them know which 

sound event has occurred. 

3. Experimental Results  

In this section, the performance of the proposed SED method 

of the proposed system is evaluated using real life audio.  

The living area used in our experiments was a 30 m2 

apartment. The rooms were equipped with sound sensors. Real 

sounds were recorded with sound sensors from various 

everyday environments. The sound corpus contained 10 sound 

classes. The polyphony percentages of the test set among the 

annotated frames were as follows: 83.5%, 10.6%, 4.3%, and 

1.6% at polyphonic levels of 1, 2, 3, and 4, respectively. These 

samples for each class were distributed randomly (60% in 

training set, 20% in validation set, and 20% in test set). The 

performance of the proposed method was compared to that of 

different classifiers in combination with different features as 

follows, where NR, ST, and 2 denote the noise reduction, 

spectrogram, and two-channels, respectively: 

Baseline (BL): The baseline system used MFCC 

coefficients (20 static, 20 delta, and 20 acceleration) extracted 

from one-channel audio. Before feature extraction, SE and CS 

were performed, although NR was not applied. A Gaussian 

mixture model (GMM) was used for SED.  

Proposed Method (PM): The PM was composed of SE, CS, 

NR2, ST2, TDOA, and BGRNN. The input layer of the 

BGRNN comprised 40 units and three hidden layers with 200 

GRU units. 3-layer BGRNNs were initialized with orthogonal 

weights and rectifier activation functions. The network was 

trained by binary cross-entropy as loss function.  

Method 1 (M1): M1 was composed of SE, CS, NR, ST, 

TDOA, and BGRNN. One-channel features per frame were 

applied to the BGRNN classifier.  

Method 2 (M2): M2 was composed of CS, ST, TDOA, 

and BGRNN. One-channel spectrogram features without SE 

or NR per frame were extracted and applied with 1 TDOA to 

the BGRNN classifier.  

Method 3 (M3): M3 was composed of SE, CS, NR2, ST2, 

TDOA, and GRNN. Instead of using the BGRNN classifier of 

M1, a GRNN was used as the classifier with two-channel 

features.  

Method 4 (M4): M4 was composed of SE, CS, NR2, ST2, 

TDOA, and LSTM-RNN. The LSTM-RNN was used as a 

classifier with two-channel features. The input layer of the 

LSTM-RNN comprised 40 units and two hidden layers with 

200 LSTM units. The network was trained by binary cross-

entropy as loss function.  

For the evaluation metrics of system performance for SED, 

we used error rate (ER) and F-scores calculated in one second 

segments [5]. Experimental results show the baseline system 

(BL) has an event average error rate (ER) of 1.1 and F-score 

of 64.5%. The PM significantly outperforms the baseline 

system in terms of ER and F. These results confirm that SE, 

CS, and NR significantly contributed to the detection of 

overlapping sound events. In addition, BGRNN achieves 

better classification results than GMM, GRNN, and LSTM-

RNN, which were trained on the same audio features. Spatial 

and noise-reduced spectrogram features from the multi-

channel audio show considerable improvements over those 

when only mono-channel audio was used with the same 

classifier.  

Table 1: Performance Comparison for different 

combinations of classifiers and feature.  

Methods ER F(%) 

BL 1.1 64.5 

PM 0.63 86.7 

M1 0.71 83.2 

M2 0.98 74.9 

M3 0.65 86.3 

M4 0.67 85.9 

 

4. Conclusions 

In this paper, we proposed a home environmental sound alert 

system for deaf and hard-of-hearing users. The proposed 

system provides the user with information of all of the 

detected sound events and their probabilities. We also 

presented an improved sound event detection scheme for a 

reliable and effective alert system. Experimental results 

demonstrate the potential effective use of the proposed alert 

system in practical situations. Future work will focus on 

extending the BGRNN to improve detection accuracy for 

various sound event detection based systems. 
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Abstract
Automatic and accurate prediction of human speech perception
performance is of great benefit for developing speech process-
ing algorithms. Automatic speech recognizers (ASR) can be
designed with the goal of mimicking human performance in
speech recognition, hence, they can also be employed for pre-
dicting the intelligibility of speech. This paper presents two
new objective measures for predicting speech intelligibility at
the word level. The normalized likelihood difference (NLD)
and the time alignment difference (TAD) are the proposed mea-
sures, extracted utilizing the hidden Markov models (HMMs)
trained for an ASR system. Experimental results show that the
proposed measures can accurately predict the normal-hearing
listeners’ performance in a keyword recognition task.
Index Terms: speech intelligibility prediction, automatic
speech recognition, microscopic approach, objective measure

1. Introduction
The number of applications of devices working with speech
signals is growing every day. For instance, many researchers
are developing speech processing algorithms for hearing aids,
which are widely needed in our aging societies. For these devel-
opments, it has always been a requirement to assess the intelligi-
bility or quality of the signal at hand before or after processing.
Partially automating this task rather than purely relying on lis-
tening tests is beneficial considering the time and cost required
in human intelligibility assessment.

In the last decades, many objective measures have been
published, which aim to predict the speech intelligibility from
a macroscopic point of view. Well-known objective measures
like the speech intelligibility index (SII) [1], speech transmis-
sion index (STI) [2], short time objective intelligibility (STOI)
[3], and mutual-information-based models [4] compare the de-
graded speech with a reference in long segments, e.g. over an
entire sentence, and predict only the average number of speech
units, like words, heard correctly. The speech-based enve-
lope power spectrum model (sEPSM) [5] is another example
of macroscopic measures, which uses an auditory model to ana-
lyze the speech signal and computes the signal-to-noise ratios in
modulation frequency bands as a measure of intelligibility. This
model was later extended to mr-sEPSM [6] and sEPSM-corr [7]
in order to account for non-linear degradations as well.

Macroscopic measures typically require longer input sig-
nals in order to obtain a sufficient accuracy in intelligibility pre-
diction. In contrast to such methods, microscopic approaches
process smaller segments of speech and attempt to predict the
individual listener’s response to a speech signal on a word-by-
word or phoneme-by-phoneme basis. As an example, the mi-
croscopic method proposed in [8] uses an auditory model to ex-
tract features from speech signals and the dynamic time warp-
ing algorithm to compare the features extracted from a degraded

signal to its clean counterpart for predicting the intelligibility of
single words.

In another microscopic framework [9], Kollmeier et al.
have considered the outputs of an ASR system as predictors of
speech perception in both normal-hearing and hearing-impaired
listeners. In this method, in contrast to the previously men-
tioned intelligibility prediction methods, it is not required to
have access to the clean signal as a reference for predicting the
speech intelligibility. Also, this method can benefit from the
language knowledge implemented as a grammar in ASR sys-
tems. In [10], it has been shown that in listening tests, humans
are taking advantage of their prior knowledge about the char-
acteristics of speech units such as phonemes. Therefore, the
authors have suggested to take the phonetic information into
account in the design of instrumental quality or intelligibility
measures. Otherwise, comparing the processed speech only to a
signal-based reference can lead to unreasonably low quality es-
timates in scenarios like artificial speech bandwidth extension.
A non-intrusive prediction of intelligibility has been introduced
in [11, 12] that uses either the oracle transcriptions or the ASR-
recognized transcriptions of the speech signal and synthesizes
the clean features, required inside an intrusive intelligibility pre-
diction method.

Microscopic methods promise to be more precise in esti-
mating intelligibility and in diagnosing problems due to spe-
cific phoneme confusions. We have previously proposed an ap-
proach [13] that uses the logarithm of likelihood ratio of the true
and the ASR-recognized word as an objective metric for the in-
telligibility prediction. In this paper, we introduce two other
new heuristic measures for predicting the speech intelligibility
from a microscopic point of view. The proposed measures are
extracted utilizing an HMM-based ASR system, which will be
explained and inspected in detail in the following sections.

2. ASR-based Microscopic Intelligibility
Measures

Within the process of recognizing a speech signal, an HMM-
based ASR system can compute some intermediate features that
are indicative of its confidence. The likelihood of N-best state
sequences or N-best word choices are primary examples [14].
Consequently, it can be hypothesized that such features con-
tain information about the intelligibility of speech units as well.
Moreover, it can be stated that the less intelligible a speech sig-
nal is, the more errors are expected in the ASR output. Hence,
the time alignment information, estimated during the recogni-
tion process, can be used as another source of information on the
intelligibility of speech units. In order to exploit such HMM-
based features in the context of speech intelligibility prediction,
the normalized likelihood difference (NLD) and the time align-
ment difference (TAD) are introduced in this paper.

Prior to extracting the NLD and TAD, an HMM-based
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Figure 1: Block diagram of the first proposed speech intelligibility measure, the NLD.

speech recognition system must be trained. Here, for each word
ν in the vocabulary, one HMM λν is built. The parameters of
each HMM can be estimated by optimizing the likelihood of
the training set observation vectors for the associated word or
by discriminative training. Based on these trained models, Fig-
ure 1 and Figure 2 illustrate the schematic diagram of extract-
ing the proposed measures NLD and TAD, respectively. The
detailed description of these measures is provided below. It is
notable that the introduced measures, here, are extracted at the
word level, however, it is possible to extend the current frame-
work for predicting the perception of phonemes as well.

2.1. Normalized Likelihood Difference (NLD)

In order to extract the NLD per word, the speech signal is seg-
mented into the constituent words and each segment is fed into
the system as an input. The first step in extracting the NLD is
to apply a feature extraction method to the input signal S and
estimate the observation sequence O = {o1o2 . . .oT }. Then,
the model likelihoods given the observation sequence are com-
puted for all possible words, P

(
λν |O

)
, 1 ≤ ν ≤ V . All model

likelihoods are sorted to find the first ν?(1) and second ν?(2)

most likely word:

ν?(1,2) = arg max
1≤ν≤V

(1,2)[P
(
λν |O

)]

= arg max
1≤ν≤V

(1,2)[P
(
O|λν

)
P
(
λν
)

P
(
O
) ]

(1)

Here, P
(
λν |O

)
is the likelihood of the word model λν given

the observation sequence O and V is the number of all possible
words.

Since the probability of the observation sequence, P
(
O
)
,

is independent of word models and the prior probability of each
model, P

(
λν
)
, is equal here for all possible words, Equation (1)

can be reformulated to

ν?(1,2) = arg max
1≤ν≤V

(1,2)[P
(
O|λν

)]
. (2)

As shown in Figure 1 and according to Equation (2), fol-
lowing the feature extraction, the forward algorithm is applied
to the observation sequence in order to compute the probabil-
ity of the input sequence given the model λν for all possible
words. Next, all probabilities are sorted and the words with the
first and second highest probability are selected. The word with
the highest probability ν?(1) is compared to the oracle transcrip-
tion of the signal νoracle. If they are equal, the NLD is defined
to be the difference between the likelihoods of the first λν?(1)
and the second λν?(2) best word models given the observation
sequence and normalized with the best likelihood. Otherwise,
the order of the difference between the two model likelihoods is
interchanged:

NLD =





P
(
λν?(1) |O

)
− P

(
λν?(2) |O

)

P
(
λν?(1) |O

) , if ν?(1) = νoracle

P
(
λνoracle |O

)
− P

(
λν?(1) |O

)

P
(
λν?(1) |O

) , if ν?(1) 6= νoracle

(3)
Similar to Equation 2, here, P

(
λν |O

)
can be replaced by

P
(
O|λν

)
and the NLD is computed in practice using the prob-

ability of the observation sequence given the word models.

2.2. Time Alignment Difference (TAD)

As a second metric, we consider the time alignment difference
(TAD) between the recognized and oracle transcriptions of the
input signal. The computational steps of this measure are shown
in Figure 2. Like the NLD, the TAD is estimated at the word
level, but the input to this method is the entire sentence. At
first, a feature extraction algorithm is applied to the input signal.
Then, a decoder is employed to perform a continuous speech
recognition on the observation sequence O. Lastly, the recog-
nized time alignment for a specified keyword is compared to its
oracle time alignment and their relative difference is computed
as the TAD measure

TAD =
|TbRec − TbOracle|+ |TeRec − TeOracle|

L
, (4)
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where TbRec and TbOracle are the recognized and the oracle
beginning frame index of a single word, respectively. Similarly
TeRec and TeOracle represent the recognized and the oracle
ending frame index of the same word and lastly, L is the word
length in frames.

3. Experiments
3.1. Speech Intelligibility Database

The original Grid corpus [15] and its noisy version [16] have
been used in the following experiments. The original corpus
contains 34000 clean speech signals in total, recordings of 34
English speakers made at the University of Sheffield. Each Grid
utterance is a 6-word sentence with a fixed grammar: <Verb
(4)- Color (4)- Preposition (4)- Letter (25)- Digit (10)- Adverb
(4)>, where the numbers in parentheses represent the number
of available choices for each word type.

In addition to the clean Grid database, there is also a noisy
version, which has been created by adding speech-shaped noise
to the clean signals at 12 different signal-to-noise ratios (SNRs)
from -14 dB up to 6 dB in steps of 2 dB, plus 40 dB (labeled as
clean). For the noisy database, the results of a listening test con-
ducted on 20 listeners with normal hearing are available. Each
participant has listened to 2000 utterances and has been asked
to recognize three keywords, the color, letter, and digit [16].

3.2. Experimental Setups

The first step in all experiments is the extraction of features from
the speech signals. As features, the first 13 Mel frequency cep-
stral coefficients (MFCCs) plus their first (∆) and second order
derivatives (∆∆) were used. Hamming-windowed frames with
a length of 25 ms and a frame shift of 10 ms were chosen for
the MFCC extraction algorithm. The sampling frequency was
set to 25000 Hz in all experiments.

For ASR, each word was modeled using a linear left-to-
right HMM, resulting in 51 whole-word HMMs plus one si-
lence model. The number of states were chosen as three times
the number of phonemes of the modelled word. A 2-mixture di-
agonal covariance GMM represents the state output distribution
of all HMMs.

In order to be able to use the entire data collected in the
listening test for evaluating the intelligibility measures, all ex-
periments were carried out with 5-fold cross validation. Dur-
ing each fold, the speech database was divided into the disjoint
training (60%), development (20%), and test (20%) sets. To
raise the accuracy, noise-dependent models were trained sepa-
rately at each SNR and development sets were used to assess

the accuracy of HMMs during the training.
To evaluate the proposed intelligibility measures, single

Gaussian models (GM) were utilized to predict the intelligibil-
ity of the Grid keywords. For each test, two GMs were trained;
one to represent the distribution of the intelligibility measure
for correctly recognized words and another one representing the
distribution of the same intelligibility measure but for words
misrecognized by human listeners. Hence, in this framework,
intelligibility measures were used as input features for GMs.
After training, GMs were employed to predict whether an in-
put speech signal can be recognized correctly at the word level.
Here, the development set data were used for training the GMs
and the test set data were used to evaluate them.

3.3. Evaluation

In the current work, the proposed intelligibility measures are as-
sessed for predicting the normal-hearing listeners’ performance.
The results, presented below, are averaged over all 20 listeners
available in the Grid database. Table 1 contains the accuracy
of the proposed intelligibility measures NLD and TAD in pre-
dicting human keyword recognition results, averaged over 12
SNRs. Also, the accuracy of the ASR system in the same task
is given in this table, which is computed by a direct comparison
of ASR and human recognition outcomes. In addition to the
mentioned methods, the well-known macroscopic intelligibility
measure STOI [3] was used as a baseline to predict the intel-
ligibility of Grid keywords. Please note that the STOI method
needs longer units of speech for its computations and normally,
it can not be used for computing the intelligibility of a sin-
gle word. Therefore, we have augmented the length of every
speech signal corresponding to a word by repeating the same
signal several times to allow for a computation of the STOI per
word. This repetition was implemented in the one-third octave
band domain. After framing and extracting the one-third octave
band representation of the signal in each frame, all frames were
repeated several times for both degraded and reference speech
signals without inserting any silence gaps. Therefore, no ar-
tifacts have been introduced to the signal, which might have
disadvantaged the STOI method.

Considering the results in Table 1, it is evident that both
proposed measures, NLD and TAD, have higher accuracies, on
average, in comparison to the STOI and to the direct use of the
ASR output. Moreover, the average accuracy of the TAD ex-
ceeds that of the NLD measure. A statistical significance anal-
ysis using Fisher’s exact test [17] has shown that the TAD is
statistically different from all competitors at a significance level
of 0.01. Furthermore, the comparison of the NLD and ASR re-
sults with that of the STOI using the same test has shown that
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Table 1: Average accuracy of all considered intelligibility mea-
sures in predicting the keyword recognition performance of 20
normal-hearing listeners.

ASR STOI NLD TAD
78.70 77.24 78.76 80.92

both methods are statistically different from the STOI, at a sig-
nificance level of 0.01 as well.

An SNR-based comparison of the above intelligibility pre-
diction methods is provided in Figure 3. One can observe that
the TAD has the highest accuracy in most SNRs down to -8 dB.
The STOI has a comparable performance to that of the TAD
at 2 dB and higher SNRs but its accuracy drops steeply in the
middle of the plot. The NLD and ASR have a similar pattern
and are less accurate at higher SNRs than the STOI and TAD
measures. The NLD is performing better than the ASR in most
SNRs except for the very high (greater than 4 dB) and very low
(smaller than -12 dB) ones.
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Figure 3: Accuracy of all considered intelligibility measures per
SNR in predicting the the keyword recognition performance of
20 normal-hearing listeners.

4. Conclusions and Future Work
In this work, we have introduced two new intelligibility mea-
sures, NLD and TAD, both derived from a simple ASR system.
These measures are proposed for predicting the intelligibility
from a microscopic point of view. The NLD is computed based
on the likelihood difference of the 2 best word choices and the
TAD depends on the time alignment information. It was shown
that, on average, both measures outperform the STOI method
as well as the direct ASR system output. The TAD achieves a
higher accuracy than the NLD. In some SNRs, both measures
have lower accuracies in comparison to the baseline methods
which needs more analysis. Extracting and appending comple-
mentary information to the proposed measures, and employing
a discriminatively trained, DNN-based ASR can be considered
as possible solutions for elevating the accuracy of our measures.
The capacity of these measures for predicting the individual per-
formance of hearing-impaired listeners will be examined in fu-
ture works. Also, an extension of the NLD based on the likeli-
hoods of n-best word hypotheses should be investigated in fu-
ture work, with the goal of predicting likely word confusions.
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Abstract
Hearing-impaired (HI) listeners have great difficulty in un-

derstanding speech when there is noise, music, or people talk-
ing in the background. Despite of some advances that have been
made in the field, current algorithms adopted in modern hearing
aids have had limited success in improving speech intelligibil-
ity, as background noise is amplified along with people’s voice
of interest. Previously many studies [1, 2, 3, 4, 5] have focused
on enhancing spectral contrast of sound in order to increase
speech intelligibility in noise. These techniques typically em-
ploy a digital processing method for altering spectral contrast –
the difference in amplitude between spectral peaks and valleys.
However, the effects of such processing are usually small (for
example, [4] report a relative improvement of 8% in intelligibil-
ity for one set of parameters only at a signal-to-masker ratio of
-6 dB, but not higher).

One of the reasons that such methods are not very effective
is that spectral contrast is enhanced without distinguishing tar-
get speech from background noise. Such blind processing does
not necessarily improve auditory grouping, a likely process lis-
teners use to organise sound mixtures into auditory streams be-
longing to individual sources. In some cases grouping cues may
be degraded by such processing [4].

Recently, machine learning methods that utilise a deep neu-
ral network (DNN) have shown breakthrough performance in
speech and language processing. DNNs can learn to identify the
spectro-temporal regions in which speech dominates the noise
(referred to as a “mask”)[6, 7, 8]. The speech-dominating parts
are amplified whereas those in which background noise dom-
inates are discarded. Such noise-filtering methods have been
shown improved speech intelligibility for hearing-impaired lis-
teners [9, 10].

There are two reasons, however, to believe that filtering out
all background noise may not be the optimal solution for im-
proving speech intelligibility for hearing-aid users. First, im-
proved signal-to-noise ratios do not necessarily translate into
improved speech intelligibility. Identification of reliable speech
regions is challenging in daily listening environments where
a large and variable number of sound sources are present,
and mislabelling of speech-dominating parts can often degrade
speech intelligibility. Second, even if we could perfectly filter
out the background noise, some of them are often desired to
which listeners might want to switch attention. For example,
when talking to someone at a train station, the listener might
also want to pay attention to the announcement in the back-
ground.

In this study we look beyond traditional spectral contrast
enhancement and propose an approach in which deep learning
is used to inform spectral contrast enhancement. At first, a DNN
based method is adopted to identify the spectro-temporal mask

dominated by the target speech. Previous studies have used rela-
tively simple DNN architectures and input features [9, 10]. The
recent research conducted at Sheffield has demonstrated that in-
corporation of pitch-related features in a long short term mem-
ory (LSTM) network is capable of learning long-term depen-
dencies which is particular effective when the background noise
is not stationary as in daily listening environments [8]. In the
subsequent spectral contrast enhancement, the time-frequency
components belonging to a same source are processed coher-
ently. This could include not just enhancing the spectral con-
trast for the target speech, but also reducing the spectral con-
trast. Such a method is analogous to reducing the depth of field
of a lens in photography, thus emphasising the target subject
while de-emphasising the background.

The aim of this study is to determine the benefit of the
proposed deep learning methods on speech intelligibility for
hearing-impaired listeners. The objectives include:

• To measure the benefit of improved deep learning meth-
ods for speech masks estimation on speech intelligibility
for hearing-impaired listeners;

• To determine the effect of mask-informed spectral con-
trast enhancement.

We plan to conduct two sets of listening experiments. In the
first set of experiments, the estimated probabilistic mask will
be used to directly resynthesise enhanced signals, by weighting
time-frequency (T-F) bins accordingly before overlap-adding
signals over all frequencies. Three different DNNs will be used
including the state-of-the-art baseline system proposed in [10]
and two proposed systems [8]. In the second set of experiments,
the best performing mask estimation method from the first ex-
periment will be selected and used to inform spectral contrast
enhancement. In this case spectral contrast enhancement is ap-
plied only to the T-F bins that are more likely to be dominated
by speech. The other T-F bins are left intact so that the back-
ground sound are not completely filtered out. The results will
be compared with those by direct resynthesis from the first set
of experiments.

We will measure the effect of such processing on speech
intelligibility by measuring the percent correct identification of
keywords in sentences presented in both speech-shaped noise
and a second talker. Two groups of listeners will be in-
vited to take part in this experiment: normal-hearing listen-
ers and hearing-impaired listeners. Two signal-to-masker ratios
(SMRs) will be used for each set of tests.
Index Terms: spectral contrast enhancement, deep learning,
hearing impairment, speech understanding in noise
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Abstract
In our previous study, we have proposed a practical method
for noise reduction using a microphone array. The method
initially estimates the direction of arrival (DOA) and wave-
form of a noise signal, then subtracts the estimated noise from
the output of a reference microphone to restore a target sig-
nal. However, the method is effective only when there is one
noise source. This study expands the method by using the least
absolute shrinkage and selection operator (LASSO) algorithm.
When there are multiple noise sources, the DOA of the most
dominant noise is estimated by the LASSO to reduce the noise
effectively. The results from computational simulation exper-
iments show the efficiency of the proposed method when the
microphone array is mounted on an eyeglass frame.
Index Terms: microphone array, DOA estimation, LASSO,
eyeglass frame

1. Introduction
Microphone arrays are effective for improving speech intelli-
gibility in a noisy environment. As for hearing aids, a simple
installation of a microphone array is to mount it on an eyeglass
frame. However, classical delay-and-sum (DAS) beamforming
provides very small amounts of noise reduction at low frequen-
cies because the array length is comparable to the wavelength
of a low frequency component involved in speech. The perfor-
mance has been progressed by using adaptive array processing
[1] and the superdirective array technique [2]. These advanced
processing techniques need a high calculation cost, while the
cost should be reduced for portable devices such as hearing aids.

We have proposed a practical method to suppress noise us-
ing a microphone array [3]. However, the method is effective
only when there is one noise source. This study expands the
method by using the least absolute shrinkage and selection op-
erator (LASSO) algorithm [4].

2. Proposed system
2.1. System structure

The basic structure of the expanded system is the same as that
in [3]. Figure 1 shows the block diagram of the system when
there are four microphones. The microphones are located on
an eyeglass frame (Fig. 2) where the first one from an edge is
defined as the reference microphone (MR). A sound arriving
from perpendicular to the eyeglass frame is regarded as a target
signal and sounds arriving from other directions are treated as
noise signals. This system first estimates the DOA and wave-
form of a noise signal observed at the MR independently across
frequency bins, and then subtracts the estimated waveform of
the noise signal from the MR output to suppress the noise.

A signal observed at the MR, MR(ω), is a superimposition
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Figure 1: Block diagram of the proposed system [3].

Figure 2: Microphone array mounted on an eyeglass frame.

of a target signal, S(ω), and a noise signal, N(ω).

MR(ω) = S(ω) + N(ω) (1)

If we assume that one noise sources is located far away from the
array, the signal observed at the i-th microphone, Mi(ω), can
be described as follows:

Mi(ω) = S(ω) + N(ω)e−jωτi (2)

where τi is the time delay from the MR. By subtracting MR(ω)
from Mi(ω), the residual signal from the i-th microphone,
Ri(ω), is given by

Ri(ω) = Mi(ω) − MR(ω)

= N(ω)
(
e−jωτi − 1

)

= 2 |N(ω)| sin
(
−ωτi

2

)
ej(Arg[N(ω)]− ωτi

2
+π

2 )

(3)

where |N(ω)| and Arg[N(ω)] describe the amplitude and
phase of the noise, respectively. Thus, the amplitude and phase
of Ri(ω) are given as follows:

|Ri(ω)| = 2 |N(ω)| sin
(
−ωτi

2

)
,

Arg[Ri(ω)] = Arg[N(ω)] − ωτi

2
+

π

2
.

(4)
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First, we estimate the DOA of the noise signal, θN , by

θN = sin−1

(−2c(Arg[Ri+1(ω)] − Arg[Ri(ω)])

ω(di+1 − di)

)
(5)

where di denotes the distance between MR and Mi [3].
Next, we estimate N(ω) based on Eq. (4) using τi =

di sin(θN )/c where c is the velocity of sound.

|N(ω)| =
|Ri(ω)|

2 sin
(
−ωτi

2

) ,

Arg[N(ω)] = Arg[Ri(ω)] +
ωτi

2
− π

2

(6)

The above derivation indicates that the noise signal at the
MR is easily estimated. Thus, the calculation cost is low.

Finally, the waveform of the noise is synthesized by super-
imposing an inverse fast Fourier transform, IFFT[N(ω)], of all
frequency bins onto it, which is then subtracted from the output
of the MR to restore the target signal.

2.2. Expansion of the system

As described above, the DOA of noise, θN , is given by Eq. (5).
When there are two noise sources at the same time, however,
this equation estimates an intermediate direction of the two
sources. As a result, the amplitude and phase of the superim-
posed noise cannot be estimated correctly by Eq. (6) and the
performance of noise reduction is degraded.

To overcome this problem, this study expands the method
to focus the most dominant noise in a temporal frame in sig-
nal processing. Because speech signals are sparse in the time-
frequency domain, the dominant signal can be specified for ev-
ery frequency bin in a temporal frame. Thus, the DOA of a dom-
inant signal can be regarded as a function of frequency, θN (ω).
We decided to adopt the LASSO algorithm to specify the DOA
of a dominant noise source. If the experimental conditions such
as the number of microphones are enough, this algorithm esti-
mates not only the DOA but also the amplitude and phase of the
noise [5]. However, we estimate only the DOA of a dominant
source because the present condition of four microphones with
a short array seems not enough. Based on the estimated DOA,
the amplitude and phase of the dominant noise are calculated by
Eq. (6) for every frequency bin independently.

3. Evaluation of the proposed system
We conducted computer simulation experiments to evaluate the
performance of the expanded system. The target, noise, and
jammer signals were “Thank you very much. (female)”, “Hello,
hello. (male)”, and “Welcome to Japan. (female)”, respectively.
Off-axis noises were made with phase-shifting digital filters.
The sampling frequency was 16 kHz, and the FFTs were con-
ducted for 512-point temporal frames with the hanning window
(frame shift: 256 points). The noise DOAs were estimated in-
dependently across frequency bins for higher than 1500 Hz, and
their median was set for lower frequency bins. The LASSO esti-
mation was implemented using the function of MultiTaskLasso
(alpha = 0.5) in a Python machine learning library, scikit-learn.
The bases of LASSO consist of the following vectors:[

0, e−jωτ1 − 1, e−jωτ2 − 1, e−jωτ3 − 1
]T

where these vectors were prepared for every 5◦.
Figure 3 shows the obtained amount of noise suppression

that is defined as the decrease in noise power in the MR output.
When there is one noise source, the performance is much better

Proposed 

method

Delay & sum array

(a) There was one noise source.

Proposed 

method

Delay & sum array

Jammer

(b) There were two noise sources where one was fixed at 30◦.

Figure 3: Performance of noise suppression as a function of the
DOA of a noise signal.

than the DAS beamforming (Fig. 3(a)). Because the LASSO
bases were prepared in 5◦ steps, the amount of noise reduction
is larger if the DOA of noise is near one of the bases. When
another noise source (jammer) is fixed to 30◦, the performance
becomes poorer for the contralateral bearings (Fig. 3(b)). How-
ever, it is better than our previous system [3] in which little
suppression is observed for the contralateral bearings. Thus, we
can conclude that the expansion was succeeded.

Because the system was implemented in Python interpreter
language to use a smart library of machine learning, the process-
ing is not realtime operation. The next step of the project will
be implementation of the system using a compiler language.
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Abstract
Nowadays, the pure-tone audiogram is the main tool used to
characterize the degree of hearing loss and to fit hearing aids.
However, the perceptual consequences of a hearing loss are typ-
ically associated not only with a loss of sensitivity, but also with
a loss of clarity (distortion loss) that is not captured by the au-
diogram. Detailed characterization of hearing deficits can be
complex and it has to be simplified in order to efficiently in-
vestigate the specific compensation needs of individual listen-
ers. The aim of this study is to characterize individual hearing
deficits by means of a test battery that allows to capture the di-
verse aspects of hearing loss, considering not only the loss of
sensitivity but also supra-threshold distortions.

It was hypothesized that any listeners hearing can be char-
acterized along two dimensions: distortion type I and distortion
type II. While distortion type I can be linked to factors affecting
audibility, distortion type II is considered as a non-audibility-
related distortion, or clarity loss. To evaluate our hypothesis,
the data from two studies was re-analyzed using a data-driven
approach. Both studies carried out an extensive battery of psy-
choacoustic tests on potential hearing-aid users. The new anal-
ysis was based on an archetypal analysis and uses unsupervised
learning to identify extreme patterns in the data which provide
the basis for different auditory profiles. Subsequently, a deci-
sion tree was obtained that enables a simple classification of the
listeners into one of the profiles.

This novel approach provided evidence for the existence of
four different “auditory profiles” in the data. The most signifi-
cant predictors for the profile identification were related to tem-
poral processing, peripheral compression, and speech percep-
tion. The current approach is promising for identifying the most
relevant tests for auditory profiling and considering new fitting
strategies based on the individuals deficits.
Index Terms: hearing deficits; hearing aids; hearing profile;
temporal processing; supra-threshold distortions
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Abstract

Recently, we proposed an audio-visual speech recognition
system based on a neural network for a person with an articula-
tion disorder resulting from severe hearing loss. In the case of a
person with this type of articulation disorder, the speech style is
quite different from that of people without hearing loss, making
a speaker-independent acoustic model for unimpaired persons
more or less useless for recognizing it. Our proposed system
has shown high performance; however, some problems remain.
Although the feature extraction networks are trained using the
phone labels as the target class, it is difficult to obtain the cor-
rect alignment for their speech. Also, it is necessary to consider
a gap between audio and visual feature spaces to treat the dif-
ferent modalities. In this paper, we propose a feature extraction
method using deep canonical correlation analysis to tackle these
weaknesses. The effectiveness of this approach was confirmed
through word-recognition experiments in noisy environments,
where our feature extraction method outperformed the conven-
tional methods.
Index Terms: Speech recognition, multimodal, deep canonical
correlation analysis, assistive technology

1. Introduction
In recent years, a number of assistive technologies using in-
formation processing have been proposed; for example, sign
language recognition using image recognition technology [1]
and text reading systems from natural scene images [2]. In this
study, we focused on communication-assistive technology for a
physically unimpaired person to enable him or her to communi-
cate with a person with an articulation disorder resulting from
severe hearing loss.

Some people with hearing loss who have received speech
training, or who lost their hearing after learning to speak, can
communicate using spoken language. However, in the case of
automatic speech recognition (ASR), their speech style is so dif-
ferent from that of people without hearing loss that a speaker-
independent (audio-visual) ASR model for unimpaired persons
is of little use for recognizing such speech as described in Sec-
tion 5.1. Matsumasa et al. [3] researched an ASR system for ar-
ticulation disorders resulting from cerebral palsy, and reported
the same problem. Najninet al. [4] investigated the relationship
between a hearing-impaired individual’s speech and his hearing
loss.

The performance of speech recognition systems generally
degrades in a noisy environment. For people with hearing loss,
because they do not hear ambient sound, they cannot control
the volumes of their voices and their speaking style in a noisy
environment, and it is difficult, those who are physically unim-
paired, to recognize utterances using only the speech signal. In

such cases, we try to read the lips of the speaker to compen-
sate for the reduction in recognition accuracy. For people with
hearing problems, lip reading is one communication skill that
can help them communicate better. In the field of speech pro-
cessing, audio-visual speech recognition has been studied for
robust speech recognition under noisy environments [5, 6, 7].
In this paper, we investigate an audio-visual speech recognition
approach for articulation disorders resulting from severe hear-
ing loss.

Recently, we proposed bottleneck feature extraction [8]
from audio and visual features for a hearing-impaired person us-
ing convolutive bottleneck networks (CBN), which stack multi-
ple layers of various types (such as a convolution layer, a pool-
ing layer, and a bottleneck layer) [9] forming a deep network.
Thanks to the convolution and pooling operations, we can train
the convolutional neural network (CNN) robustly to deal with
the small local fluctuations of an input feature map. In some
tandem approaches using deep learning, an output layer plays
a classification role, and output units are used as a feature vec-
tor for a recognition system, where phone labels are used as a
teaching signal for an output layer. However, in the case of an
articulation disorder, the phone label estimated by forced align-
ment may not be correct. An approach based on CBN [10] uses
a bottleneck layer as a feature vector for a recognition system,
where the number of units is extremely small compared to the
adjacent layers, following the CNN layers. Therefore, the bot-
tleneck layer is a better feature than an output layer, which is
strongly influenced by some wrong phone labels because it is
expected that the bottleneck layer can aggregate the propagated
information and extract fundamental features included in an in-
put map. In this paper, we investigate another approach to tackle
this alignment problem—unsupervised learning.

In multi-view learning, deep canonical correlation analy-
sis (DCCA) [11], which is nonlinearly-extended canonical cor-
relation analysis (CCA), has been proposed. DCCA has two
deep neural networks and simultaneously learns nonlinear map-
pings (both networks) of two modalities that are maximally cor-
related. CCA is a statistical method for dealing with the corre-
lation between sets of two variables, finding linear projection
vectors. Unlike CCA, DCCA is a parametric method, and it
can learn the complex transformations of two views. DCCA
has been applied to several audio classification tasks [12, 13],
and improved [14]. The DCCA objective function is optimized
in an unsupervised manner over the actual data; therefore, it is
not necessary to use some wrong phone labels for training net-
works.

In most multimodal speech recognition systems, audio and
visual features are integrated by just concatenating these fea-
tures. Because the audio and visual features are intrinsically
different, and a gap between audio and visual feature spaces
may cause undesirable effects in speech recognition. Applying
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DCCA, gaps between two feature spaces are reduced, and we
expect to obtain more complementary features for speech recog-
nition. We will show in this paper that our proposed feature can
achieve better recognition performance in noisy environments.

The rest of this paper is organized as follows: In Section 2,
we review CCA and DCCA. In Section 3, our proposed method
is explained. In Section 4, the experimental data are evaluated,
and the final section is devoted to our conclusions.

2. Preliminaries
In this section, we review CCA and DCCA, where two views
represent the audio and visual features.

2.1. Canonical Correlation Analysis

Let Xaudio ∈ Rd1×N , Xvisual ∈ Rd2×N denote audio and vi-
sual features with N samples where the sample mean of these
matrices is normalized to zero, and d1 and d2 represent the di-
mension of the audio and visual features, respectively. In CCA,
the correlation coefficient is calculated as follows:

ρ(a, b) = corr(a⊤Xaudio, b
⊤Xvisual) (1)

=
a⊤Σavb

√
a⊤Σaaa

√
b⊤Σvvb

, (2)

where a ∈ Rd1 , b ∈ Rd2 are the projection vectors, which
are parameters of CCA, and Σav ∈ Rd1×d2 , Σaa ∈ Rd1×d1 ,
Σvv ∈ Rd2×d2 are the cross-covariance matrices of Xaudio and
Xvisual, the covariance matrix of Xaudio and Xvisual, respec-
tively. Since ρ(a, b) is invariant to scalling of a and b, we as-
sume that each standard variance of denominator in Eq. (2) has
one; that is the projections are constrained to have unit variance,

max
a,b

a⊤Σavb subject to a⊤Σaaa = b⊤Σvvb = 1 (3)

If we use L ≤ min(d1, d2) pairs of linear projection vectors,
the projection matrices for audio and visual features are formed
as U ∈ Rd1×L and V ∈ Rd2×L, respectively. We obtain the
following formulation to identify the projection matrices A and
B:

maximize tr(A⊤ΣavB) (4)

subject to A⊤ΣaaA = B⊤ΣvvB = I,

where tr(·) and I indicate the sum of the elements on the main
diagonal and the unit matrix, respectively.

The optimal objective value is the sum of the top k singu-
lar values of T = Σ

−1/2
aa ΣavΣ

−1/2
vv . The optimal projection

matrices are given by (A, B) = (Σ
−1/2
aa Uk, Σ

−1/2
vv Vk), where

Uk ∈ Rd1×k and Vk ∈ Rd2×k are the first k left- and right-
singular vectors of T. Indeed, the covariance matrices Σaa and
Σvv are estimated from data using regularization so that they
are constrained to the nonsingular matrix.

2.2. Deep Canonical Correlation Analysis

DCCA computes the representations of the two views by pass-
ing them through multiple stacked layers of nonlinear transfor-
mation. Given the audio and visual features (Xaudio,Xvisual),
the outputs of the audio and visual neural networks are written
as f(Xaudio; θ1) ∈ Ro×N , f(Xvisual; θ2) ∈ Ro×N , respec-
tively. θ1, θ2 indicate parameters of the audio and visual net-
works, respectively. DCCA computes the total correlation as

follows:

corr(a⊤f(Xaudio; θ1), b
⊤f(Xvisual; θ2)) = tr(T⊤T)

1
2 ,

(5)

where T = Σ̂
−1/2
aa Σ̂avΣ̂

−1/2
vv as reviewed in section 2.1.

Σ̂av = 1
N−1

XaudioX
⊤
visual and Σ̂aa = 1

N−1
XaudioX

⊤
audio +

r1I are the covarince matrices with regularization constant r1 >

0, similarly for Σ̂vv . The goal of DCCA is to jointly learn pa-
rameters {θ1, θ2, u, v} for both views, such that the correlation
is as high as possible. The parameters {θ1, θ2} are trained us-
ing back-propagation. The gradient of Eq. 5 can be computed
as follows:

∂corr(a⊤f(Xaudio; θ1), b
⊤f(Xvisual; θ2))

∂f(Xaudio; θ1)

=
1

N − 1
(2∇aaXaudio + ∇avXvisual) (6)

where ∇ab = Σ̂
−1/2
aa UV⊤Σ̂

−1/2
vv and ∇aa =

− 1
2
Σ̂

−1/2
aa UDV⊤Σ̂

−1/2
aa , and the derivative with respect

to f(Xvisual; θ2) has a symmetric expression.
General DNN objective functions are written as the expec-

tation (or sum) of error functions (e.g., squared loss) calcu-
lated for each training sample. This property naturally suggests
stochastic gradient descent (SGD) for optimization, where gra-
dients are estimated for a few training examples (a mini-batch)
and iteratively updated parameters. However, in DCCA (Eq. 5),
it is necessary to estimate the covariance matrices for the train-
ing samples. Andrew et al. [11] used a full-batch algorithm
(L-BFGS) for optimization. This is undesirable for applications
with large training sets, as each gradient step computed on the
entire training set can be very expensive in both memory and
time. To mitigate this problem, Wang et al. [12] showed that
it works well, even for this type of objective, if larger mini-
batches are used. It is considered that a large mini-batch has
enough information to estimate covariances. Hence, in this pa-
per, we also configure a larger mini-batch size.

3. Related Works
Deep learning has had recent successes for acoustic model-
ing [15]. Deep neural networks (DNNs) contain many layers of
nonlinear hidden units. The key idea is to use greedy layer-wise
training with restricted Boltzmann machines (RBMs) followed
by fine-tuning. Ngiam et al. [16] proposed multimodal DNNs
that learn features over audio and visual modalities. Mroueh
et al. [17] improved this method and proposed an architec-
ture considering the correlations between modalities. Ninomiya
et al. [6] investigated integration of bottleneck features using
multi-stream hidden Markov models (HMMs) for audio-visual
speech recognition.

CNNs also have demonstrated impressive performance on
several tasks, such as image analysis [18, 19, 20] and spoken
language [21] and music recognition [22]. In our previous
work [8], we showed that the features extracted from CNNs lead
to effective results for speech recognition thanks to the proper-
ties of the local receptive field and the shift invariant. Therefore,
in this paper we do not use DNNs, but CNNs, for nonlinear
mappings of two modalities.

Recently, multimodal learning has been researched in rela-
tion to discovering useful information about the world. If such
methodology can be used to develop an accurate system, we
would be able to obtain non-verbal information that cannot, at
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Figure 1: Deep CCA using CNNs

this time, be explained expressly and cannot be obtained from
discriminative models. Unsupervised learning is an approach
to can be used to handle this problem. For multimodal fusion
tasks, several approaches have been proposed [23, 24] where
modalities are modeled using a generative model that is based
on an RBM. For speech recognition tasks, the reproducibility of
the input data is not necessary due to the fact that a DCCA ap-
proach is concise. In this paper, we employ DCCA with CNNs
as a robust feature extractor for the fluctuation of the speech
uttered by a person with cerebral palsy.

4. Multimodal Feature Extraction Using
DCCA

4.1. Flow of the Proposed Method

Figure 1 shows the flow of our proposed feature extraction. To
employ advantages of our previous work [8], we use CNNs for
the mappings of DCCA instead of DNNs. Hereafter, f(·; θ) in
section 2.2 indicates a CNN operation where the input is two-
dimensional.

First, we prepare the input features for training a CNN from
lip images and speech signals uttered by a person with hear-
ing loss. For the audio signals, after calculating short-term mel
spectra from the signal, we obtain mel-maps by merging the mel
spectra into a 2D feature with several frames, allowing overlaps.

The visual signals of the eyes, mouth, nose, eyebrows, and
outline of the face are aligned using the point distribution model
(PDM), and its model parameter is estimated by constrained lo-
cal model (CLM). Then, a lip image is extracted, and the ex-
tracted lip image is interpolated to fill the sampling rate gap
between visual features with respect to audio features. In this
paper, we adopted spline interpolation to the lip images.

The parameters of audio and visual CNNs are jointly
learned by back-propagation with SGD where the gradients are
calculated by DCCA objective function, starting from random
values. Following the training of both CNNs, the input mel-map
and lip images are transformed to the output units through each
CNN, and projected linearly as follows:

αt = Σ̂−1/2
aa Ukf(Xt; θ1) (7)

βt = Σ̂−1/2
vv Vkf(Yt; θ2), (8)

where (Xt, Yt) are two-dimensional input feature for audio and
visual at time t, and (αt ∈ Rk, βt ∈ Rk) are the correspond-
ing features, respectively. Then these features are concatenated,
and [α⊤

t β⊤
t ]⊤ ∈ R2k is used as the feature in the training of

HMMs for speech recognition.

4.2. Application to Speech Uttered by a Person with Hear-
ing Loss

DCCA has an advantage for speech uttered by a person with
hearing loss. In the case of an articulation disorder, the phone
label estimated by forced alignment may not be correct. How-
ever, several approaches based on DNN use the phone label as
the target class to learn parameters. The DCCA accomplishes
the training procedure in an unsupervised fashion to find the
maximal correlation between two sets of modalities. Therefore,
the feature extracted from networks trained by DCCA is not in-
fluenced by some wrong phone labels. By using DCCA, audio
and visual features are transformed through networks so that
output units have a high correlation. In noisy environments,
we expect that even if the audio feature is degraded, the trans-
formed feature has adequate robustness because this feature has
a high correlation to the visual feature which is noise-invariant.

5. Experiments
5.1. Recognition Results Using a Speaker-independent
Acoustic Model

At the beginning, we attempted to recognize utterances using
a speaker-independent acoustic model for unimpaired people
(This model is included in Julius [25]). The acoustic model
consists of a triphone HMM set with 25-dimensional MFCC
features (12-order MFCCs, their delta and energy) and 16 mix-
ture components for each state. Each HMM has three states
and three self-loops. For a person with hearing loss, a recog-
nition rate of only 3.24% was obtained, but for a physically-
unimpaired person, a recognition rate of 88.89% was obtained
for the same task. It is clear that the speaking style of a person
with hearing loss differs considerably from that of a physically-
unimpaired person. Therefore, it is considered that a speaker-
dependent acoustic model is necessary for recognizing speech
from a person with hearing loss.

5.2. Word Recognition Experiments

5.2.1. Experimental Conditions

Our proposed method was evaluated on word recognition tasks.
We recorded utterances of one male person with hearing loss,
where the text is the same as the ATR Japanese speech database
A-set [26]. We used 2,620 words as training data, and 216
words as test data. The utterance signal was sampled at 16
kHz and windowed with a 25-msec Hamming window every 5
msec. For the acoustic-visual model, we used the monophone-
HMMs (54 phonemes) with 3 states and 6 mixtures of Gaus-
sians. We compare our audio-visual feature with conven-
tional MFCC+∆+∆∆ (36-dimensions) and MFCC+∆+∆∆+
discrete cosine transform (DCT) (66-dimensions). Then, our
proposed method and audio-visual features were evaluated in
noisy environments. White noise was added to audio signals
and their SNR is set to 20dB, 10dB, and 5dB. Audio CNN and
HMMs are trained using the clean audio feature.

5.2.2. Architecture of the Networks

We construct deep networks, which consist of a convolution
layer, a pooling layer, and fully-connected MLPs. For the in-
put layer of audio CNN, we use a mel-map of subsequent 13-
frames with 39-dimensional mel spectrum, and the frame shift
is 5 msec. For the input layer of visual CNN, frontal face videos
are recorded at 60 fps. Luminance images are extracted from
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Table 1: Filter size, number of feature maps and number of
MLPs units for each architecture. The value for C indicates the
filter size of the convolution layer that has #1 maps. The convo-
lution layer is associated with the pooling layer. The value of S
means the pooling factor. The value for M indicates the number
of units for each layer in the MLP part.

Input C S #1 M

Audio CNN 39×13 4×2 3×3 13 108, 30, 108

Visual CNN 12×24 5×5 2×2 13 108, 30, 108

the image using CLM and resized to 12×24 pixels. Finally, the
images are up-sampled by spline interpolation and input to the
CNN.

Table 1 shows parameters used in experiments. We set the
bottleneck layer into networks to investigate the performance
of bottleneck features. In the training procedure, a learning rate
and a momentum are set to be 0.0001 and 0.99, respectively.

5.2.3. Number of Mini-batch Sizes

In the preliminary experiment, we compared the effects of
changing the number of mini-batches with 50 epochs in a clean
environment. Table 2 shows the results when changing the num-
ber of mini-batches as 1,200, 1,500, 1,800, 2,100 and 2,400.
Through the experiments, we found that the performance im-
proves as the number of mini-batches increased. The reason for
the improvement is attributed to being able to estimate the co-
variance matrix more accurately when using larger mini-batch
sizes. In the future experiments, we will use a mini-batch size
of 2,100.

Table 2: Word recognition accuracy for each mini-batch size

# of mini-batches 1,200 1,500 1,800 2,100 2,400

Recognition
accuracy [%] 63.89 65.28 66.20 71.76 71.76

5.2.4. Results and Discussion

Figure 2 shows the word recognition accuracies in
noisy environments. We compared the audio-visual
feature extracted from our proposed method with
two conventional features: MFCC+∆+∆∆ (MFCC),
MFCC+∆+∆∆+DCT (MFCC+DCT). In Figure 2, DCCA
and DCCA bottleneck denote the features extracted from the
final projection layer and the bottleneck layer (30-dimensions).
Comparing DCCA bottleneck with DCCA, the former shows
better accuracies. This is because the information that the
audio feature has is lost when it is transformed to near the
visual space. The DCCA bottleneck feature is better than
MFCC+DCT in SNR of 10dB. This might be because the
DCCA bottleneck feature obtained more noise-robustness
compared with the conventional feature. These results show
our proposed method improves performance.

Figure 3 shows the word recognition accuracies comparing

Figure 2: Word recognition accuracy using HMMs

our proposed method with the previous method [8]. The DCCA
framework is the unsupervised learning that is applied to the ac-
tual data in order to find the maximal correlation between two
sets of modalities without other information. Therefore, the ex-
tracted feature might not be able to present the phonological
information. Our previous work employed supervised learning
using the phone labels. In our experiments, the accuracy of the
DCCA bottleneck degraded on average 14% compared to using
supervised learning.

Figure 3: Word recognition accuracy of unsupervised and su-
pervised training procedure

6. Conclusions
In this paper, we discussed an audio-visual speech recognition
system for a person with an articulation disorder resulting from
severe hearing loss based on CNNs. We proposed a feature ex-
traction method using CNNs trained by deep CCA which is op-
timized in an unsupervised manner. In the DCCA procedure,
audio and visual CNNs are trained maximizing the correlation
between the units of each output layer. When a noisy input sig-
nal is fed to CNNs, although the audio feature is degraded, the
visual feature compensates for the degraded audio feature data
to increase accuracy. Then, the degradation of accuracy is re-
strained in high-noisy environments.

In comparison, in experiments between the proposed fea-
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ture and a conventional unsupervised feature (MFFC+DCT),
the proposed feature showed better performances than the con-
ventional one. The improvement was more significant in high-
noisy environments. However, the performance of the proposed
method was lower than that of the supervised method. This re-
sult suggests that using DCCA, the phonological information
are not necessarily extracted.

In future work, we will further investigate a better DCCA-
based feature extraction which is also highly correlated to the
phonological information. Person with an articulation disor-
der resulting from severe hearing loss need the various appli-
cations for communication, for example, voice-to-signal con-
version system. Although their speech style is so different from
that of people without hearing loss, they can make appropriate
lip shapes. Therefore, the voice-to-signal conversion system is
able to help the interaction with others. We will also research
this system in future work.
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Abstract

We present a modified version of the real-time GCC-NMF
stereo speech enhancement algorithm that drastically reduces
the inherent system latency by incorporating an asymmetric
STFT windowing strategy. Long analysis windows retain the
high spectral resolution required by GCC-NMF, while short
synthesis windows significantly reduce the overall system la-
tency. We show that GCC-NMF speech enhancement quality
is relatively unaffected by this windowing strategy, with the
overall objective PEASS score remaining stable for varying sys-
tem latencies. The asymmetric windowing technique comes at
a cost of increased computational load, with shorter synthesis
windows requiring a shorter frame advance, thus increasing the
number of windows to be processed. We present an analysis
of the computational requirements of GCC-NMF to run in real-
time on a variety of hardware platforms including the Raspberry
Pi and the NVIDIA Jetson TX1. All tested systems are fast
enough to achieve latencies at least as low as 24 ms with small
NMF dictionaries of 64 atoms, while the fastest NVIDIA K40
GPU system is capable of achieving 6 ms latency with a large
dictionary of 1024 atoms.
Index Terms: real-time, latency, speech enhancement, source
separation, GCC-NMF, GCC, NMF, GCC-PHAT, CASA

1. Introduction
A wealth of speech enhancement algorithms designed to sup-
press noise and reverberation have been developed in fields such
as speech coding, automatic speech recognition, and source sep-
aration. Many such algorithms, however, remain inapplicable
in the context of hearing assistive devices due to both inher-
ent algorithmic latency and computational performance on low-
power hardware. We address these hurdles here with respect
to the real-time GCC-NMF speech enhancement algorithm we
introduced recently [1, 2].

Many speech enhancement algorithms including GCC-
NMF are built around the short-time Fourier transform (STFT)
with which sound is processed in short, overlapping segments
of time [3]. A consequence of the traditional STFT is an inher-
ent algorithmic latency where, independent of processing speed,
there exists a trade-off between spectral resolution and the delay
between the system’s input and output. With many algorithms
relying on high spectral resolution, latencies greater than 64 ms
are common. In the context of assistive listening devices, how-
ever, such high latencies are perceived as objectionable echoes
as a superposition of both the aided and unaided sounds are
heard by the listener [4]. Depending on the type and severity
of hearing loss, delays below 15 to 32 ms are likely required to
be tolerable [5, 6], with delays less than 10 ms being a reason-
able objective in the general case [7, 8].

In this work, we integrate the asymmetric STFT windowing
approach proposed by Mauler and Martin [9] into the GCC-
NMF speech enhancement system, simultaneously providing
high spectral resolution and latencies well below 10 ms, de-
pending on available computational power. An alternative ap-
proach to low delay speech enhancement was developed by
Löllmann and Vary using low delay filter banks [10, 11]. We be-
gin with a review of the real-time GCC-NMF speech enhance-
ment algorithm in Section 2, followed by a description of the
asymmetric STFT windowing method in Section 3. We then
demonstrate the robustness of GCC-NMF speech enhancement
quality to latency reduction with asymmetric windowing, as
well as an analysis of the computational requirements of GCC-
NMF on a variety of hardware platforms in Section 4, followed
by the conclusion in Section 5.

2. Real-time GCC-NMF
The GCC-NMF stereo speech enhancement algorithm com-
bines the non-negative matrix factorization (NMF) unsuper-
vised dictionary learning algorithm [12] with the generalized
cross-correlation (GCC) spatial localization method [13]. GCC-
NMF is flexible in terms of microphone separation, where sep-
arations ranging from 5 cm to 1 m have been tested previously
[1]. NMF provides a parts-based representation of the input
mixture signal in terms of dictionary atoms in the magnitude
frequency domain, while GCC provides an estimate of the time
delay of arrival (TDOA) of each dictionary atom, at each point
in time. The NMF dictionary atoms estimated to originate from
the direction of interest are recombined and used to construct a
Wiener-like filter, as is typical for NMF-based speech enhance-
ment [14]. The resulting filter is applied to the mixture signal
to yield the system output. For offline speech enhancement,
the NMF dictionary may be learned directly from the mixture
signal, while in the online case, it is pre-learned from isolated
speech and noise signals using a different dataset than used at
test time, generalizing to new speakers, acoustic and noise con-
ditions, and recording setups [2].

Online GCC-NMF speech enhancement is performed on
a frame-by-frame basis given the pre-learned NMF dictionary
Wfd (with f indexing frequency and d indexing the dictionary
atoms), the complex-valued left and right Fourier-transformed
frames Vlf and Vrf , a set of possible TDOAs indexed by τ , and
the target direction τs estimated using an accumulated GCC-
PHAT localization process [2]. First, the GCC-NMF angular
spectrum GNMF

dτ , is constructed for each dictionary atom,

GNMF
dτ =

∑

f

WfdRe

(
VlfV

∗
rf

|Vlf | |Vrf |
ej2πfτ

)
(1)

where for a given atom d, GNMF
dτ is a function of τ that will be
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high for values of τ near the estimated direction of arrival. A
binary atom mask Md is then constructed given the estimated
target direction τs,

Md =

{
1 if

∣∣τs − argmaxτG
NMF
dτ

∣∣ < ε/2

0 otherwise
(2)

such that only atoms whose GCC-NMF angular spectrum
reaches its peak within a window of size ε of the target TDOA
are accepted. Finally, a Wiener-like filter is constructed as the
ratio of the sum of unmasked atoms

∑
dWfdMd to the sum of

all atoms
∑
dWfd, and is used to filter input signals resulting

in the enhanced speech signal X̂cf , where c indexes the left and
right channels,

X̂cf =

∑
dWfdMd∑
dWfd

Vcf (3)

With the online GCC-NMF speech enhancement algorithm
now defined, we proceed to show how the underlying STFT im-
poses an lower limit on its real-time latency, and how the asym-
metric STFT windowing method mentioned previously may be
used to drastically reduce this latency.

3. Asymmetric STFT Windowing
3.1. STFT and Latency

The STFT processes sound in short, overlapping segments of
time called frames. Each frame is multiplied by an analysis
window prior to computing its Fourier transform. Resynthesis
is achieved by taking the inverse Fourier transform of the trans-
formed frame, multiplying the resulting samples by a synthesis
window, and combining neighbouring frames via the overlap-
add (OLA) method. Perfect reconstruction can be achieved if
the transform has the constant overlap-add (COLA) property,
i.e. if the overlapped sum of the product of the analysis and
synthesis windows is constant over time [15]. A commonly
used window for analysis and synthesis is the square root of
the periodic Hann window, where the periodic Hann function is
defined for frame size N as,

HN [n] =

{
1
2

(
1− cos

(
2π n

N

))
0 ≤ n < N

0 otherwise
(4)

The above process of overlapped signal windowing with
OLA resynthesis induces a latency LOLA equal to the window
sizeN . In order to run in real-time, all processing including the
Fourier transform and its inverse, should occur within a single
frame advance R, resulting in a total system latency of N + R
[15]. We previously presented the real-time GCC-NMF separa-
tion system on input signals sampled at 16 kHz, with a window
size of 1024 samples with varying frame advance, resulting in
a total latency of 64 ms plus 8 ms with a frame advance of 128
samples, for example. As described in Section 1, latencies this
large are unsuitable for real-world use in hearing assistive de-
vices.

A first approach to reduce the GCC-NMF system latency
is to simply reduce the window size N . This comes at the ex-
pense of decreasing the spectral resolution, however, and as we
will show in Section 4.2, GCC-NMF speech enhancement qual-
ity decreases significantly for small window sizes with this ap-
proach. We therefore present another approach to latency re-
duction based on an asymmetric STFT windowing method that
combines long analysis windows with short synthesis windows.

3.2. Asymmetric STFT windowing

Departing from the tradition of symmetric analysis and syn-
thesis windows that have the same duration, asymmetric win-
dowing allows us to simultaneously achieve high spectral res-
olution and low latency by combining long analysis windows
with relatively short synthesis windows. The asymmetric win-
dows we use in this work have been adapted from the more
general case proposed by Mauler and Martin [9], though other
asymmetric windowing approaches can be found in the litera-
ture [16, 17, 18, 19].
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Figure 1: Comparison of the symmetric and asymmetric STFT
window functions for frame size N . a) Traditional symmetric
square root Hann analysis and synthesis window functions and
their product Hann window, all having duration N . b) Asym-
metric window functions, where the analysis window has du-
ration N and is weighted towards the right, while the synthesis
window has duration 2M<N , and shares its right edge with the
underlying frame. The resulting product of the analysis and syn-
thesis windows is a Hann window of size 2M that also shares
its right edge with the underlying frame.

For a given frame sizeN , the asymmetric analysis and syn-
thesis windows are designed such that their point-wise product
is a Hann window of size 2M < N . This Hann window shares
its right edge with the underlying frame, and can be made to be
much shorter than the frame itself by choosing 2M � N , as
depicted in Figure 1. The analysis window hA and the synthesis
window hS are defined mathematically as,

hA[n] =





√
H2(N−M)[n] 0 ≤ n < N−M√
H2M [n− (N−2M)] N−M ≤ n < N

0 otherwise
(5)

hS [n] =





√
H2M [n−(N−2M)]√

H2(N−M)[n]
N−2M ≤ n < N−M

√
H2M [n−(N−2M)] N−M ≤ n < N

0 otherwise
(6)

These window functions are constructed in two parts with re-
spect to the center of the analysis-synthesis product Hann win-
dow, i.e. N−M . To the right of N−M , both analysis and syn-
thesis windows consist of the right half of a square root Hann
window of size 2M . To the left, the analysis window con-
sists of the left half of a Hann window of size N−M , while
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the synthesis window is defined as the ratio of the analysis
window and the product Hann window, limited to the range
N−2M ≤ n < N−M .

In Figure 2, we compare the traditional STFT windowing
method using square root Hann windows with the asymmetric
STFT windowing presented above. The analysis window size
is N in both cases, and the asymmetric synthesis window size
is set to N/4, i.e. with M=N/8. In both cases, the window
overlap is 50% of the synthesis window, such that perfect re-
construction (PR) is achieved. We note that retaining the rel-
ative synthesis window overlap while decreasing the synthesis
window size results in a significant increase in the number of
windows required for the overlap-add windowing process, thus
increasing the computational load. We also note that this ap-
proach increases the start-up latency of the STFT, though this
may mitigated by simply pre-padding the signal with zeros.
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Figure 2: Comparison of analysis and synthesis processes for
a) symmetric and b) asymmetric windowing functions, given a
synthesis window overlap of 50%. For the analysis stage (left),
the input signal and time-shifted analysis window functions are
shown in black, with the resulting windowed frames shown in
blue. For synthesis stage (right), the time-shifted synthesis win-
dow functions shown in black, the reconstructed frames are
shown in gray, and the resulting windowed frames used for
overlap-add resynthesis are overlaid in blue. The overlap-add
result is then shown below in black, with the normalized over-
lapped sum of the anslysis-synthesis window products in red.

4. Experiments
In this section, we first compare the effect of latency reduc-
tion using the symmetric and asymmetric windowing methods
on the learned NMF dictionary atoms, followed by the effect
on GCC-NMF speech enhancement quality. We then study the
empirical processing time requirements of GCC-NMF for a va-
riety of hardware platforms, to determine the conditions under
which the proposed low-latency system may be run in real-time
on currently available hardware.

We reuse here the data and evaluation metrics as presented
in the development of the real-time GCC-NMF speech enhance-
ment algorithm [2]. Unsupervised training data consists of a
small subset of the speech and noise signals from the CHiME

challenge [20], taken as 4096 randomly chosen frames divided
equally between speech and noise signals from a single mi-
crophone. Evaluation data consists of the two-channel mix-
tures of speech and real-world noise from the SiSEC speech
enhancement challenge [21], where the microphones are sepa-
rated by 8.6 cm, though as mentioned previously, GCC-NMF
has been tested for microphone separations ranging from 5 cm
to 1 m [1]. Both datasets are sampled at 16 kHz. Speech en-
hancement quality is quantified with the Perceptual Evaluation
methods for Audio Source Separation (PEASS) toolkit [22], de-
signed to better correlate with subjective assessments than the
traditional SNR-based metrics. PEASS metrics consist of four
scores quantifying the overall enhancement quality, target fi-
delity, interference suppression, and lack of perceptual artifacts,
where higher scores are better for all measures. Future work
will include a wider range of evaluations metrics including mea-
sures of speech intelligibility, STOI [23] and ESTOI [24]. The
default NMF dictionary size for the experiments that follow is
1024, while the default STFT synthesis window overlap is 75%.

4.1. Effect on NMF dictionary atoms

As described in Section 3.1, the inherent latency of the real-
time GCC-NMF speech enhancement algorithm using tradi-
tional symmetric STFT windowing may be reduced by simply
reducing the STFT frame sizeN . An undesired consequence of
this approach, however, is a reduction spectral resolution, as de-
creasing the STFT frame size results in increasingly wideband
spectrograms. In Figure 3a), we depict example NMF dictio-
nary atoms learned for varying symmetric STFT window size,
noting that as the window size is decreased, dictionary atoms
become increasing wideband, and the spectral details captured
with longer duration windows are lost.
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Figure 3: Example NMF dictionary atoms learned for varying
STFT synthesis window size for a) symmetric windowing and
b) asymmetric windowing. For each window size, a subset of
16 randomly chosen dictionary atoms are shown from a total
of 1024. For symmetric windowing, the analysis window length
decreases with the synthesis window, while for asymmetric win-
dowing, the analysis window size remains fixed at 64 ms, with
only its shape changing as a function of synthesis window size.

Contrary to the traditional windowing approach, asymmet-
ric windowing allows us to retain the long-duration analysis
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windows while decreasing the synthesis window size. As the
synthesis window size 2M is reduced, the analysis window
size remains fixed at the frame size N with its shape increas-
ingly weighted towards the future, as we showed in Figure 1b).
In Figure 3b), we present example NMF atoms learned using
the asymmetric window approach for varying synthesis window
size, where the learned NMF atoms are shown to retain spec-
tral detail, regardless of synthesis window size. As identical
training data and random seed is used in all cases, the resulting
atoms remain very similar across synthesis window sizes, with
only subtle differences in the learned dictionary atoms resulting
from the different analysis window shapes.

4.2. Effect on speech enhancement quality

In Figure 4a), we present the PEASS scores on the SiSEC
speech enhancement dataset as a function of STFT window size
for the symmetric windowing case. We first note that the overall
enhancement performance decreases with decreasing window
size, with a significant drop in performance for window sizes
less than 8 ms. This is likely due to a decreased separability of
speech and noise sources with the wideband NMF atoms shown
above, resulting in decreased quality of the resulting GCC-NMF
speech enhancement. We also note a drastic trade-off between
interference suppression and lack of artifacts, where smaller
window sizes result in increased interference suppression at the
cost of significant artifacts.
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Figure 4: Effect of STFT synthesis window size on GCC-NMF
speech enhancement performance for a) symmetric windowing
and b) asymmetric windowing with a fixed analysis window of
64 ms. The PEASS scores correspond to objective measures
of overall enhancement quality, target fidelity, interference sup-
pression, and lack of artifacts, where higher scores are better in
all cases.

In Figure 4b), we present the effect of latency on PEASS
scores for the SiSEC dataset for the asymmetric windowing ap-
proach. The analysis window here is kept fixed at 1024 samples
at 16 kHz (64 ms), while the synthesis window size is varied
from 512 to 32 samples (32 to 2 ms), with an overlap of 75% of
the synthesis window used in each case. We note that the overall
PEASS score remains relatively constant for varying synthesis
window size, with only a slight reduction for synthesis windows

as short as 2 ms. We also note the same trade-off between in-
terference suppression and lack of artifacts as with symmetric
windowing, though it is much more tempered for the asymmet-
ric windowing approach. Finally, we note that the target fidelity
is consistently higher for the asymmetric windowing case, and
remains relatively constant for varying synthesis window size.
These results demonstrate that the proposed asymmetric win-
dowing approach is a viable solution to reduce the latency of
real-time GCC-NMF to values well below the threshold re-
quired for hearing devices while maintaining the enhancement
quality of the higher latency symmetric windowing approach.

4.3. Latency and GCC-NMF processing time

We now proceed to study the computational requirements of
the GCC-NMF speech enhancement algorithm with asymmet-
ric windowing to determine the conditions under which it may
be executed in real-time. As we saw in Section 3.2, the inherent
latency of the asymmetric STFT process is equal to the duration
of the synthesis window plus the frame advance. For speech en-
hancement to be performed in real-time, the system must then
process a single frame within the time of a single frame ad-
vance. This processing time includes the windowing processes,
the forward FFT, the GCC-NMF speech enhancement process-
ing itself, the inverse FFT, and the OLA summation.

In Figure 5a), we present the average measured process-
ing time of the online GCC-NMF enhancement algorithm for
a single frame as a function of the NMF dictionary size, for a
variety of hardware platforms. We note that the processing time
increases approximately linearly with dictionary size, with the
slope varying between hardware platforms. On all systems pre-
sented, processing times less than 8 ms are possible, provided
a small enough dictionary is used, where enhancement perfor-
mance decreases smoothly with decreasing dictionary size as
we have shown previously [2].

In Figure 5b), we depict the relationship between system
latency and available processing time for a single frame, as a
function of synthesis window size and overlap. Decreasing ei-
ther the synthesis window size or the frame advance decreases
the system latency at a cost of decreased available processing
time. We may combine this information with Figure 5a) to de-
termine, for a given hardware system and dictionary size, the
available synthesis window size and overlap values (and result-
ing latencies), in order for the system to run in real-time. All
systems prove fast enough for a synthesis window size of 16
ms with 50% overlap and a dictionary size of 64, resulting in
a latency of 24 ms. All systems except the Raspberry Pi may
achieve 12 ms latency for small to moderate dictionary sizes,
with a window size of 8 ms and 50% overlap. The fastest sys-
tem (Tesla K40 GPU) can achieve 6 ms latency for dictionaries
at least as large as 1024 atoms. These results demonstrate that it
is possible to achieve latencies suitable for hearing assistive de-
vices with real-time speech enhancement with GCC-NMF using
the asymmetric windowing technique. While these results are
promising, the hardware platforms tested remain significantly
more powerful than those found in currently available hearing
aids. Future work will therefore involve additional implemen-
tation optimizations in order to run the system with larger dic-
tionaries on even lower-power devices.

5. Conclusion
We have presented an approach to reducing latency in the real-
time GCC-NMF speech enhancement system by incorporating
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Figure 5: Real-time GCC-NMF computational requirements
with the asymmetric STFT windowing technique, with a) Ef-
fect of dictionary size on GCC-NMF mean empirical process-
ing time for a single frame on various hardware platforms given
an analysis window size of 64 ms, and b) available processing
time for a single frame, given the asymmetric STFT window-
ing approach, presented for varying synthesis window size and
overlap, with the resulting latency as the horizontal axis.

an asymmetric STFT windowing technique. This asymmetric
windowing method provides long duration analysis windows
as with the traditional symmetric window approach, maintain-
ing the high spectral resolution required by GCC-NMF, but
uses short synthesis windows in order to drastically reduce sys-
tem latency. We have shown that while speech enhancement
performance suffers for the traditional symmetric windowing
method when decreasing system latency using shorter windows,
the asymmetric windowing approach results in relatively con-
stant performance across a wide range of synthesis window
sizes as short as 2 ms given an analysis window size of 64
ms. The computational requirements of the online GCC-NMF
algorithm were presented for a variety of hardware platforms
including the Raspberry Pi and NVIDIA Jetson TX1, and it
was shown that the system may run in real-time with latencies
below 24 ms on all platforms, provided the NMF dictionary
size is adapted to the computational capabilities of the hard-
ware. Moderately powerful hardware may achieve 12 ms la-
tency with moderate dictionary sizes, while for the most pow-
erful hardware we tested, a Tesla K40 GPU, latencies as low
as 6 ms are possible with a large NMF dictionary of 1024
atoms. Source code for this work will be made available at
https://www.github.com/seanwood/gcc-nmf.
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Abstract
Assistive hearing devices often suffer from a low acceptance by
the end user due to poor sound quality. Recently, a novel acous-
tically transparent hearing device was developed that aims at in-
creasing the acceptance and benefit, also for (near-to) normal-
hearing people, by providing better sound quality. The hear-
ing device integrates three microphones and two receivers and
can be calibrated in-situ in an attempt to conserve the open-ear
sound transmission characteristics of an individual person.
To further improve the quality of acoustic transparency and ex-
tend the functionality of the hearing device, we outline the in-
tegration of further models and algorithms. Electro-acoustic
models of the device can improve adjustment to transparency by
providing a better estimate of the pressure at the eardrum with
an in-ear microphone. In addition, the multi-microphone device
layout allows the development of custom feedback cancellation
algorithms by means of a beamformer in order to robustly steer
a spatial null towards the hearing device receiver.

1. Introduction
Despite a great improvement in hearing technology in the past
decades, the acceptance of assistive hearing devices is still lim-
ited, partially due to poor sound quality [1, 2, 3]. This is partic-
ularly true for potential first-time users with a mild-to-moderate
hearing loss or even (near-to) normal hearing. While they would
benefit from features like speech enhancement or amplification
in acoustically challenging situations, they are usually not will-
ing to accept a general degradation of the sound quality. There-
fore, an important challenge is to develop a device that is acous-
tically transparent, i.e., that allows hearing comparable to that of
the open ear while being capable of providing a desired sound
enhancement at the eardrum. These principles can be applied
not only to hearing aids, but also to consumer products, e.g.,
hearables [4, 5].

We recently developed a prototype of an acoustically trans-
parent hearing device that can be individually calibrated aiming
to preserve the open-ear sound transmission characteristics of
the particular user, even if the ear canal is partially occluded [6].
The used sound equalization approach exploits the microphone
positions of a novel vented multi-microphone earpiece, includ-
ing an in-ear microphone for monitoring the pressure in the ear
canal. Acoustical transparency on the perceptual level was ver-
ified in a subjective listening experiment [6], and convincing
sound quality with the device was observed for normal hearing

subjects [7]. Nevertheless, the need for improving transparency
in a physical sense was revealed in a recent technical evaluation
[8]. Furthermore, other processing stages might interact with
the desired goal of acoustic transparency.

After presenting the hardware of the device in Section 2,
in this paper we first review the sound equalization approach
to achieve acoustic transparency in Section 3, and then present
two approaches that aim at improving and completing its func-
tionality towards a full acoustically transparent hearing device.
To improve the acoustic transparency feature, a promising ap-
proach is to include electro-acoustic models of the device [9].
These models provide an accurate estimate of the sound pres-
sure at the eardrum with an in-ear microphone, which is key
to precise sound equalization in a non-occluding fit. Principles
and first results comparing the estimated and measured pres-
sure at the eardrum are outlined in Section 4. In addition, the
multi-microphone hardware layout facilitates feedback cancel-
lation using a beamformer with a spatial null steered towards
the receiver [10, 11, 12] in addition to state-of-the-art adaptive
feedback cancellation methods [13]. The principle is briefly in-
troduced and potential interactions of the null-steering approach
with the aim of providing acoustic transparency are evaluated in
Section 5. Challenges resulting from integrating all approaches
are discussed in Section 6.

2. Hardware
The custom in-the-ear type earpiece with relatively open acous-
tic properties is depicted in Figure 1. A schematic drawing is
shown in Figure 2, together with the filter stages in sound equal-
ization (see Section 3) and feedback cancellation (see Section
5), as well as references to the electro-acoustic model (see Sec-
tion 4).

All electronic components are removably fitted into an in-
dividual silicone earmould that fills the concha bottom. In total,
the device contains 3 microphones and 2 receivers. Two mi-
crophones (Type Knowles GA-38) and two balanced armature
receivers are located in an acrylic tube referred to as the core,
which is inserted into a bore through to the ear canal. The first
microphone is located at the inner face of the core and points
towards the eardrum (”in-ear microphone” with output voltage
y1 and pressure p1) and serves to monitor the sound pressure
in the ear canal. The second microphone is located at the outer
face of the core and points outwards (”entrance microphone”,
with output voltage y2 and pressure p2). The third microphone
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Figure 1: Assembled earpiece, from [6]. 3 microphones and 2
receivers are fitted into an individual silicone earmould.

(”concha microphone”, Type Knowles FG-23329, with output
voltage y3 and pressure p3) is placed in the back of the con-
cha by flush insertion into a hole. The two independent re-
ceivers are positioned next to the microphones at both ends of
the core, but both pointing towards the eardrum. The inner one
is a tweeter (Knowles WBFK-30019, with input voltage u1) and
the outer one a woofer (Knowles FK-26768, with input voltage
u2). Note that although included in the electro-acoustic model,
the woofer is not currently used in operation, i.e., it is not con-
sidered in sound equalization and feedback cancellation, which
is indicated by a dashed line in Figure 2. The hearing device is
connected to a PC for real-time signal processing via a sound-
card and a custom supply and amplifier box.

The residual space in the core between the microphones and
receivers forms a vent, to increase wearing comfort by ventila-
tion and reduction of the occlusion effect [14, 15]. This also
implies that sounds below 1 kHz reach the eardrum without
considerable attenuation, and the frequency response of the re-
ceivers is restricted to above ca. 800 Hz [6].

3. Achieving Acoustic Transparency by
Individualized Sound Equalization

3.1. Principles

Acoustic transparency is achieved, when the superposition
of direct sound leaking through the core and the electro-
acoustically reproduced sound at the eardrum is physically or
perceptually equal to the pressure that would be present with
an open ear. Achieving acoustic transparency can be separated
into two problems: First, the pressure at the eardrum with an
open ear has to be estimated based on the available microphone
signals to compute the so-called target pressure. Second, the
device has to be adjusted such that the target pressure is gener-
ated at the eardrum of the individual subject when the device is
in the ear, i.e., sound equalization is performed.

In [6], the target pressure was defined as the pressure at the
concha microphone, multiplied with an appropriate frequency-
dependent gain function. This strategy is justified by observa-
tions from spatial audio technology showing that the relative
transfer function between a recording point near the (blocked)
ear canal entrance and the eardrum of an open ear is not
direction-dependent [16]. Thus, the concha microphone ap-
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−
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Concha
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Figure 2: Top part: Schematic drawing of the hearing device
with filter stages for sound equalization and feedback cancel-
lation. Lower part: Corresponding elements and circuit of the
electro-acoustic model.

proximately contains the direction-dependent portion of the
transfer function to the eardrum, and the optimal gain function
is the relative transfer function between the concha microphone
location and the eardrum in the individual ear. In [6], a flat
gain function was used, with the extension that the direct sound
leaking through the individual core is considered.

To achieve sound equalization to the target pressure, the fil-
ter G of the hearing device is adjusted in a calibration routine
conducted in-situ, i.e., when the device is inserted into the ear.
The concha microphone is used to pick up external sound. As-
suming that the pressure at the eardrum and the in-ear micro-
phone are similar, the pressure at the eardrum generated by the
external sound source and the active device is estimated using
the in-ear microphone. Based on the observed deviation from
the target pressure, the filter G is adapted until convergence is
achieved.

3.2. Current limits and possible extensions

In psychoacoustic experiments with normal-hearing subjects,
satisfactory results in terms of acoustic transparency on the per-
ceptual level were observed [6, 7]. However, physical evalua-
tions still reveal some deficits with the current sound equaliza-
tion approach. Figure 3 shows measurements of the Real-Ear
Insertion Gain (REIG) of the transparent hearing device proto-
type as presented in [6]. The REIG is the difference between
the sound pressure at the eardrum measured when the device is
inserted and with an open ear. Acoustic transparency on a phys-
ical level is achieved if the REIG is 0 dB across all frequencies.
The measurements were conducted in a free-field environment
in both ears of 12 subjects, and include 3 incident directions in
the horizontal plane (azimuth θ = 0◦, 90◦,−135◦ ).

The measured REIGs deviate from 0 dB, particularly for
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Figure 3: Real-Ear Insertion Gain (REIG) after 1/6 octave
smoothing measured with the hearing device prototype as pre-
sented in [6]. The data includes measurements in both ears of
12 subjects, with 3 incident directions in the horizontal plane.

frequencies above 2 kHz. The error is notably different between
subjects and incidence directions, and the variation increases
with frequency. This result shows that there is room for im-
provement in acoustic transparency, which may be tackled with
various approaches.

Most of the observed error in the REIG can be explained by
two factors: errors in the estimation of the target pressure, and
inaccuracies in the sound equalization due to incorrect estima-
tion of the pressure at the eardrum. To estimate the pressure at
the eardrum, in [6] the pressure at the in-ear microphone was
used, which in most cases introduces an individual estimation
error of up to ±20 dB, which is highly variable across frequen-
cies [8]. Thus, the sound equalization error could be reduced if
a better estimate of the pressure at the eardrum were available.
Electro-acoustic modeling approaches can be used for this pur-
pose, which are treated in Section 4.

In addition, the occurrence of acoustic feedback due to the
acoustic coupling between the receiver and the concha micro-
phone has been neglected so far. While this is possible when
only the concha microphone is utilized for sound pickup and
the applicable gain is limited, appropriate feedback manage-
ment is a prerequisite when larger amplification than for acous-
tic transparency is required, or when both external microphones
are used for sound pickup, e.g., when implementing a direc-
tional microphone. Feedback cancellation techniques tailored
to the custom hardware layout are reviewed in Section 5, where
possible interactions with acoustic transparency are examined.

4. Electro-Acoustic Model
In our previous work [9], we proposed an electro-acoustic
model, which serves to better understand the underlying physi-
cal principles of sound transmission in the hearing device, and
to estimate quantities at locations where they cannot be directly
measured, e.g., the sound pressure at the eardrum. The current
focus is to predict the sound pressure at the eardrum pd in vivo,
based on measurements using the microphones of the hearing
device only.

The model is made up of lumped elements and two-port
networks, as depicted in Figure 2. The middle part is the core,
which can be regarded as fixed over individual subjects. On the
other hand, both terminations, i.e. the external sound field and
the residual ear canal, are individual to every ear. The complete
model cannot be determined in one step, but is built up in a
series of measurements and calculations that are described in
the following.

4.1. Model of the Core

First, the model of the core is obtained. It consists of:
• two microphones, characterized by their sensitivity mea-

sured prior to assembling the core, each converting its
output voltage signal ym to the corresponding pressure
pm.

• two receivers, which are modeled as ideal volume veloc-
ity sources, delivering the flux qn. This source parameter
was also measured prior to assembling the core, accord-
ing to the technique described by [17].

• the vent, represented by three acoustic transmission lines
modeled as two-port networks A1,2,3 according to [18].
The three parameters of each transmission line (length,
radius and a loss factor) need to be fitted by referring to
acoustic measurements. The microphones and receivers
are coupled into the vent at locations depicted in Figure
2.

To fit the free parameters of the transmission lines, the assem-
bled core was coupled to a training setup with known termina-
tion impedances, and all four transfer functions between the two
receivers and microphones 1 and 2 were measured. The medial
termination was an IEC711 coupler, while at the lateral end the
core was mounted in a baffle. The optimal parameters of the
two-port networks were found by minimizing the differences
between the measured and modeled transfer functions. Good
agreement and computational effectiveness could be achieved
with the Nelder-Mead-Simplex [19] algorithm, where the pa-
rameter values were constrained to realistic boundaries.

4.2. Model of the Individual Ear

In a second step, a model of the individual ear is estimated. It
contains both terminations of the core, as shown in Figure 2.
The external sound field (outer termination of the core) is char-
acterized by the radiation impedanceZrad, which can be further
split into the transfer impedance Zp3 between the outer core
end and the concha microphone, and a remaining impedance
Zrad − Zp3. Zrad is approximated by the physical model of a
piston in baffle. The model of the individual ear canal E (me-
dial termination of the core) is individualized based on mea-
surements in the ear of a subject. It is composed of four cas-
caded acoustic transmission lines with four radii and one to-
tal length as parameters, and two parallel load impedances Zl

and Zl,residual located medially (across them pd is produced).
Zl is a purely resistive frequency-independent load to represent
losses, Zl,residual is complex valued and frequency dependent.

Assuming the core model and the outer termination are
known and using the transfer function measurements from any
of the two receivers to the in-ear microphone, the acoustic
impedance Zec at the point of p1 (i.e., the in-ear microphone)
in the direction towards the ear canal can be calculated. Then,
the parameters of the individual ear canal model E are fitted
by minimizing both level and phase differences between mea-
sured and modeled impedances Zec, summed across the fre-
quencies from approximately 1 to 15 kHz. Again, the Nelder-
Mead-Simplex algorithm was applied with realistic boundaries.
Since it was observed that results depended on initial values,
500 random initial values were used and the lowest cost result
taken.

Several studies (e.g. [20, 21]) have shown that Zec - or
the reflectance derived from it - can be used to estimate an ear
canal model E and ultimately predict the sound pressure at the
eardrum pd.
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Figure 4: Deviation between the pressure at the eardrum pre-
dicted by the model pd,Model and the one measured with a probe
tube microphone pd,Meas, for twelve subjects, with the woofer
as sound source.

4.3. Evaluation

The individual ear canal model E and the predicted pressure at
the eardrum pd were evaluated by means of probe tube mea-
surements in 12 subjects.

The differences between the model predictions and the
measurements of pd created by the woofer are shown in Figure
4. Below 6 kHz, the agreement in both magnitude and phase is
very good. However, for higher frequencies, the differences in-
crease. It should be noted that in this frequency range the probe
tube measurements are more likely to be corrupted by errors,
as the tube had to be in place together with the earmold which
made visual inspection of its position impossible. Furthermore,
around 8 kHz the core has a low source impedance, i.e., the
impedance at the point where p1 is measured towards the lat-
eral direction is low compared to typical ear canal impedances
Zec. This reduced measurement accuracy may additionally lead
to deviations between the estimated and measured sound pres-
sure.

5. Feedback Cancellation
Acoustic feedback occurs when a signal is picked up by a mi-
crophone, amplified, played back by a receiver and picked up
again by the microphone, creating a closed-loop system. In
hearing devices, adaptive feedback cancellation (AFC) is typi-
cally used to reduce the detrimental effect of acoustic feedback,
which is most often perceived as howling or whistling. In AFC,
an adaptive filter is used to estimate the acoustic feedback path
between the hearing device receiver and the microphone, theo-
retically allowing for perfect feedback cancellation [22]. How-
ever, due to the closed-loop electro-acoustic system, the esti-
mate of the acoustic feedback path is generally biased [23, 24].
Several algorithms have been proposed with the aim of reduc-
ing this bias, where the so-called prediction-error-method [24]
seems most promising. While an AFC algorithm can be ap-
plied for any hardware layout, the considered multi-microphone
setup (cf. Figure 2) additionally allows for the use of multi-
microphone feedback cancellation approaches. This includes a
fixed null-steering beamformer that exploits the spatial diversity

of the microphones to steer a spatial null towards the position
of the hearing device receiver. Note that only the inner receiver
of the device is considered here.

Several optimization approaches for calculating the null-
steering beamformer coefficients have been proposed, includ-
ing a robust least-squares design [10, 11] and a robust min-max
design [12] aiming at directly maximizing the maximum stable
gain of the hearing device, i.e., the gain before the closed-loop
system becomes unstable. Furthermore, the benefit of combin-
ing a fixed null-steering beamformer and an AFC algorithm
based on the prediction-error-method to cancel residual feed-
back has recently been shown [13]. However, in none of the
presented null-steering beamformer optimization approaches
[10, 11, 12], the preservation of the pickup microphone direc-
tional response that is required for achieving acoustic trans-
parency has been taken into account. This implies that the null-
steering beamformer may alter spectral directional cues and bias
spatial perception, e.g., sound localization. Therefore, after
briefly introducing the optimization procedure, in the following
we analyze the directional response of the fixed null-steering
beamformer.

We assume time-invariance of the acoustic feedback paths
Hm(k) = Hm, m = 1, . . . ,M between the receiver and the
mth microphone. Assuming the availability of I measurements
of the acoustic feedback paths (e.g., obtained by prior mea-
surement), the coefficients of the null-steering beamformer B
are obtained by minimizing the following least-squares cost-
function [11]

JLS(b) =

I∑

i=1

‖(H(i))Tb‖22, (1)

where b is theMLB-dimensional vector of the beamformer co-
efficients and H(i) is the MLB × (LB +LH − 1)-dimensional
matrix of concatenated convolution matrices of the acoustic
feedback paths from the ith measurement, i = 1, . . . , I , with
LB the number of beamformer coefficients for each microphone
and LH the length of the acoustic feedback path. To prevent the
trivial solution of b = 0, the beamformer coefficients in a ref-
erence microphone m0 are constrained to correspond to a delay
of Ld samples, i.e.,

bm0 = [ 0 . . . 0
︸ ︷︷ ︸

Ld

1 0 . . . 0 ]T . (2)

Figure 5: Directional response of the beamformer output rel-
ative to the directional response of the entrance microphone
(m = 2) as a function of the azimuth θ.

Proc. of the 1st Int. Conference on Challenges in Hearing Assistive Technology (CHAT-17), Stockholm, Sweden, August 19, 2017

92



To obtain the beamformer coefficients, we first measured
the acoustic feedback paths of the hearing device in the left ear
of a dummy head with adjustable ear canals [25], both in free-
field and with a hand very close to the ear, using a sampling rate
of 32 kHz. The beamformer coefficients were then computed
by minimizing (1) subject to the constraint in (2) for M = 3
microphones (in-ear, entrance and concha microphone), LB =
32, m0 = 2 (entrance microphone), Ld = 16 and I = 2.
The resulting added stable gain, i.e., the increase in gain margin
compared to using only the entrance microphone (m = 2), was
18.3 dB and 22.6 dB for the free-field condition and the hand
condition, respectively.

To compute the directional response of the null-steering
beamformer for an incoming signal, the acoustic transfer func-
tions to the microphones D(θj), j = 1, . . . , J were measured
for J = 24 equidistantly spaced angles θj surrounding the
dummy head at a distance of approximately 2.5 m in the hor-
izontal plane. Figure 5 shows the directional response of the
beamformer D̃(θj) = BTD(θj) for multiple frequencies rela-
tive to the directivity D2(θj) of the entrance microphone. Ide-
ally, the relative directional response would be equal to 0 dB for
all frequencies and incidence angles. However, the response is
different from 0 dB for most of the considered frequencies and
directions. Nevertheless, for most frequencies and incident an-
gles the null-steering beamformer alters the directivity only by
approximately ±4 dB.

6. Discussion and Summary
The principles of an acoustically transparent hearing device pre-
sented in [6] and physical evaluation results have been reviewed
in Section 3, and possible extensions towards improving and
extending its functionality have been presented in Sections 4
and 5. While the good performance of electro-acoustic model-
ing and customized feedback cancellation for the hearing device
has been demonstrated for these approaches individually, a next
challenge is the integration of the two approaches with the trans-
parency feature of the hearing device in real-time operation.

Unbiased estimation of the pressure at the eardrum can im-
prove acoustic transparency by improving sound equalization
to a target pressure at the eardrum. The electro-acoustic model
presented in Section 4 is able to predict the pressure at the
eardrum that is generated by the hearing device receiver ac-
curately up to approximately 6-7 kHz in magnitude and phase.
However, when estimating the sound pressure at the eardrum in
normal operation, the superposition with the direct sound leak-
ing through the vent needs to be considered. Since the model
is in principle also able to predict the pressure generated by the
receiver at the in-ear microphone, this predicted pressure can be
subtracted from the observed pressure at the in-ear microphone
to obtain an estimate of the direct sound only. The pressure at
the eardrum generated by the direct sound alone can then also
be predicted. It should be noted that for integrating the electro-
acoustic model with the acoustically transparent hearing device,
it is sufficient to extract all relevant transfer functions from the
model after calibration measurements.

Although the null-steering beamformer presented and eval-
uated in Section 5 yields impressive results in terms of feedback
cancellation, it was also noted that it introduces a direction-
dependent bias compared to the reference microphone. Spectral
directional cues contained in the reference microphone signal
are thus altered, which may introduce perceptual errors regard-
ing spatial hearing or other undesired artifacts. However, the
deviations are in the range of about±4 dB, and their perceptual

relevance is not yet clear. Another issue is the delay of Ld sam-
ples introduced by the beamformer, which should be considered
when designing the equalization filter G. In principle, this can
be achieved by performing the in-situ calibration [6] with the
beamformer output as hearing device input signal.

The electro-acoustic models of the individual ear, as well
as the null-steering beamformer require knowledge of the trans-
fer functions between the hearing device receivers and micro-
phones. They can be measured in-situ in the individual ear us-
ing only the device as part of calibration measurements, which
are also necessary to achieve transparency [6]. Gathering these
data is therefore no practical obstacle to integrating the electro-
acoustic model and the null-steering beamformer into a future
version of the prototype.

In conclusion, there seem to be no principal problems
hindering the integration of electro-acoustic models and cus-
tomized feedback cancellation methods into our prototype hear-
ing device. Both are promising approaches to improving the
sound equalization to achieve acoustic transparency in our pro-
totype hearing device, as well as increasing its functionality in
more realistic application scenarios with higher gain settings
and more than one pickup microphone in each side. Future
work will hence focus on the implementation of the presented
approaches to construct an improved version of our acoustically
transparent hearing device.
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Abstract
Statistic parametric speech synthesis (SPSS) systems [1] are be-
ing widely researched in the field of speech processing. We
present in this paper a speech synthesis method for people with
hearing loss. Because of their disorders, their prosody is of-
ten unstable and their speech rate, pitch, and spectrum differ
from those of physically unimpaired persons, which causes their
speech to be less intelligible and, consequently, makes commu-
nication with physically unimpaired persons difficult. In order
to deal with these problems, this paper describes an approach
that makes use of a novel combination of deep neural net-
works (DNN)-based text-to-speech synthesis using the DNNs
of a physically unimpaired person and a person with hearing
loss, while preserving the individuality of a person with hear-
ing loss. Through experimental evaluations, we have confirmed
that the proposed method successfully synthesizes an intelligi-
ble speech signal from a hard-to-understand signal while pre-
serving the target speaker’s individuality.
Index Terms: hearing disorders, speech synthesis system, deep
neural networks, assistive technologies

1. Introduction
In this paper, we focus on, as one assistive technology for a
person with hearing loss, a speech synthesis system that assists
persons in their speech communication. Their speech style may
be different from those of persons without hearing loss and the
utterances may be less intelligible due to hearing loss. It some-
times makes verbal communication with other people difficult.

A DNN-based speech synthesis system [2], [3], [4] is a text-
to-speech (TTS) system that can generate signals from input
text data. A TTS system may be useful for persons with hearing
loss because the synthesized speech signal may become more
intelligible by adjusting the utterance duration, pitch, and spec-
trum.

In this paper, we propose a DNN-based speech synthesis
method for a person with hearing loss. To generate an intelligi-
ble synthesized speech signal while preserving the speaker’s in-
dividuality, we use speech data from both a person with hearing
loss and a physically unimpaired person. Because the speech
rate of a person with hearing loss may be unstable, the duration
model of a person with hearing loss is modified using the DNNs
of a physically unimpaired person to stabilize the speech rate.
In addition, the F0 patterns of a person with hearing loss are
often unstable. To solve this problem, in the synthesis step, the
F0 features predicted from the networks of a physically unim-
paired person are used as the input of the networks of a person
with hearing loss after being converted to the average F0 of the
hearing loss person using a linear transformation.

As for the spectral problem associated with a person with
hearing loss, the consonant parts of utterances are sometimes

unclear or unstable. To resolve the consonant problem, we gen-
erate the spectrum for some consonants from the acoustic model
of a physically unimpaired person and the vowel spectrum from
the acoustic model of a person with hearing loss in order to pre-
serve the speaker’s individuality.

The rest of this paper is organized as follows; In Section
2, an introduction to related work about assistive technology is
presented. In Section 3, a speech synthesis system using deep
neural networks is presented. Section 4 presents the proposed
speech synthesis system for a person with a hearing disorder. In
Section 5, in order to confirm the effectiveness of our method,
the experimental data are evaluated. Finally, the conclusions are
drawn in Section 6.

2. Related Works
To assist people with articulation disorders, a number of as-
sistive technologies using information processing have been
proposed. As one of the techniques used for statistic para-
metric speech synthesis, the Hidden Markov model (HMM)-
based TTS approach [5], has been studied for a long time and
a number of assistive technologies using a HMM-based TTS
system have been proposed; for example, Veaux used HMM-
based speech synthesis to reconstruct the voice of individuals
with degenerative speech disorders resulting form Amyotrophic
Lateral Sclerosis (ALS) [6]. They have proposed a reconstruc-
tion method for degenerative speech disorders using an HMM
sound synthesis system. In this method, the subject’s utterances
were used to adapt an average voice model pre-trained on many
speakers. Creer also adapted the average voice model of multi-
ple speakers to severe dysarthria data [7], and Khan used such
an adaptation method on a laryngectomy patient’s data [8]. The
authors of this paper also proposed a HMM-based TTS system
for people with articulation disorders [9].

Recently, deep learning has had success in speech synthesis
in regard to naturalness and sound quality compared with hid-
den Markov models [1]. Deep neural networks contain many
layers of nonlinear hidden units and represent a mapping func-
tion from linguistic features to acoustic features. In the field of
speech processing technology, speech recognition (lip reading
using deep learning) has also had success [10].

Recently, to develop sound quality and naturalness, the ar-
chitectures of the DNN have been improved; for example, using
long-short-term-memory to take the continuity of speech into
account [11], and using i-vectors to adapt the average voice
model of multiple speakers [12]. In the adaptation task, a small
amount of speech data is required to create synthesized speech
because it is difficult for a person with an articulation disorder
to say many sentences.

In this paper, we employ trajectory training [3] to train
DNN. Trajectory training is regarded as a successful method
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and has been widely used in recent years for various tasks.

3. DNN-based Speech Synthesis
Fig. 1 shows the overview of the basic approach to text-to-
speech (TTS) synthesis based on deep neural networks. The
figure shows the synthesis parts of a DNN-based TTS system.
In the training part of networks, inputs, the linguistic features
extracted from an input text-by-text analysis, are mapped to the
output acoustic features (spectral, F0, and aperiodicity) using
back propagation. In the synthesis part, the linguistic features
are mapped to the output acoustic features using forward prop-
agation. In the parameter generation part, the output acous-
tic parameters including static, delta, and acceleration param-
eters are generated into smooth parameter trajectories using the
speech parameter generation algorithm [13]. In the waveform
synthesis part, a vocoder, such as STRAIGHT [14] or WORLD
[15], is used to synthesize speech signals from the smooth pa-
rameter trajectories. State duration densities are modeled by
the method used in HMM-based speech synthesis systems [16]
to control rhythm and tempo, where state durations of each
phoneme HMM are modeled by a multi-dimensional Gaussian
distribution.

DNN-based speech synthesis comprises the training part
and the synthesis part. Acoustic features consist of D-
dimensional static features ct = [ct(1), ct(2), ..., ct(D)] and
corresponding dynamic features ∆ct and ∆2ct , written as

ot = [cT
t , ∆cT

t , ∆2cT
t ]T (1)

Dynamic features are computed from the sequence of static fea-
tures. The sequence of acoustic features o = [oT

1 ,oT
2 , ...,oT

T ]
can be caluculated from the sequence of static features c =
[cT

1 , cT
2 , ..., cT

T ] by
o = Wc (2)

where T is the number of frames included in the sequence and
W is a matrix used to extend static features c to acoustic fea-
tures o [13].

In the training part, the input text is analyzed and trans-
formed into labels, which contain linguistic contexts. The net-
works learn the complex mapping function from linguistic fea-
tures xt to acoustic features ot, where the frame-level mean
square errors between the predicted acoustic features ôt and the
observed acoustic features ot are minimized using the back-
propagation algorithm.

In the synthesis part, output features include static, delta,
and acceleration features. To generate the smooth parame-
ter trajectories, the maximum likelihood parameter generation

Figure 1: A flow of speech synthesis using deep neural networks.

(MLPG) algorithm [17] is used to take the dynamic features as
constraints. The smooth parameter trajectory ĉ is given by

ĉ = arg max
c

P (o|λ) = arg max
c

N (Wc|µ,Σ) = c̄ (3)

where λ is the model parameter and N (|µ,Σ) denotes the
Gaussian distribution with mean vectors µ and covariance ma-
trix Σ. The smooth parameter trajectories calculated by the
MLPG algorithm can be written by (4).

ĉ = (WTΣ−1W)−1WTΣ−1µ (4)

In the synthesis part, µ is the frame obtained by performing a
forward propagation and Σ is computed from the training data.
We can reconstruct the speech waveform from the smooth pa-
rameter trajectory ĉ by using a vocoder.

3.1. Trajectory training

To take the interaction between the static and dynamic features
into account, the trajectory training minimizes the utterance-
level trajectory error than the frame-level error [3]. This train-
ing criterion is called the minimum generation error (MGE).
The Euclidean distance between the predicted trajectory ĉ (cal-
culated by MLPG) and the observed static trajectory is called
the trajectory error. The objective function is written as

L = (ĉ − c)T(ĉ − c) = (Rô − c)T(Rô − c) (5)

where
R̂ = (WTΣ−1W)−1WTΣ−1 (6)

Mean-variance normalization is performed to ĉ and c before
calculated the trajectory error. The mean and variance values
are calculated from the training data in advance. The parameters
of DNN are trained by back-propagation using gradient, as is
the case with conventional frame-level training.

4. DNN-based Speech Synthesis for a
Person with Hearing Loss

In our method, the voice of two people, a person with hearing
loss and a physically unimpaired person, are used to generate
a more intelligible synthesized speech signal that preserves the
individuality of the person with hearing loss. Fig. 2 shows the
original spectrograms for the word “/r/ /i/ /cl/ /sh/ /u/ /N/”“/r/ /i/
/cl/ /sh/ /u/ /N/” of a physically unimpaired person and a person
with hearing loss.

As shown in Fig. 2, the high-frequency spectral power of a
person with hearing loss is weaker compared to that of a phys-
ically unimpaired person. In addition, the duration of a per-
son with hearing loss is unstable that some phones (ex: “/cl”
and “/sh/”) are too long compared to other phones although the
speech length is almost the same as that of a physically unim-
paired person. This may be one of the reasons behind the unin-
telligibility. Therefore, in our method, a more intelligible syn-
thesized speech signal that preserves the speaker’s individuality
is generated by using the features of both a person with hearing
loss and a physically unimpaired person.

4.1. F0 model modification

Fig. 3 shows the overview of the approach to F0 modification.
As the F0 patterns of a person with hearing loss are often un-
stable, we modify it using the F0 features of a physically unim-
paired person.
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(a) a physically unimpaired person.

(b) a person with hearing loss.

Figure 2: Sample spectrograms of /r i cl sh u N/.

In the training part, first, DNNs of a physically unimpaired
person and a person with hearing loss are trained independent
of each other. For the DNNs of a physically unimpaired person,
the input is the linguistic features and the output is the spec-
tral, aperiodicity, and F0 features of a physically unimpaired
person. For the DNNs of a person with hearing loss, the input
is the linguistic features and the F0 features (static, delta, and
acceleration) and the output is spectral features and aperiodicity
features of a person with hearing loss.

As shown in Fig. 3, in the synthesis part, first, linguistic
features are mapped to the spectral, aperiodicity, and F0 fea-
tures using the DNNs of a physically unimpaired person. The
output F0 features of a physically unimpaired person are con-
verted to those of a person with hearing loss by using the linear
transformation in Eq. (7) and then, they are used as the input
for networks of a person with hearing loss.

ŵt =
σx

σw
(wt − µ(F0)

w ) + µ(F0)
x (7)

where wt represents a log-scaled F0 of a physically unimpaired
person at the frame t, µ(F0)

w and σt represent the mean and stan-
dard deviation of wt, respectively. µ

(F0)
x and σx represent the

mean and standard deviation of log-scaled F0 of a person with
hearing loss, respectively.

4.2. Duration model modification

The speech rhythm and tempo of a person with hearing loss dif-
fer from those of physically unimpaired persons, and this causes
their speech to be less intelligible. To solve this problem, the

Figure 3: A flow of the F0 modification method.

speech rhythm and tempo of a physically unimpaired person
are used in the synthesis part. However, as the average speech
rate contains rich speaker individuality, the average speech rate
of the synthesized speech signal is fit to that of a person with
hearing loss. To implement these ideas, the duration model is
modified as follows:

yi = ti − µ(Dur)
w + µ(Dur)

x (8)

µ(Dur)
w =

∑I
i=1 µti

I
(9)

µ(Dur)
x =

∑I
i=1 µxi

I
(10)

In Eq. (8), ti represents the value of the i-th node in the
duration model of a physically unimpaired person. In Eqs. (9)
and (10), I represents the total number of nodes in the model,
uti represents the mean the value of the i-th node in the model
of a physically unimpaired person, and uxi represents the mean
the value of the i-th node in the model of a person with hearing
loss.

5. Experiments
5.1. Experimental conditions

We prepared the training data for two men. One is a physi-
cally unimpaired person, and the other is a person with hearing
loss. We used 503 sentences from the ATR Japanese database
B-set for a physically unimpaired person and we recorded 503
sentences uttered by a person with hearing loss. 450 and 53 ut-
terances were used for training and development, respectively.
In addition, we recorded 10 sentences uttered by a person with
hearing loss for testing. The speech signal was sampled at
16kHz and the frame shift was 5 msec. Acoustic and prosodic
features were extracted using WORLD [15]. As spectral pa-
rameters, the 0-th through the 49-th mel-cepstrum coefficients
[18], and their dynamic and acceleration coefficients were used.
As excitation parameters, log-F0 and 25 band-filtered aperiod-
icity [19] were used, along with their dynamic and acceleration
coefficients.

In order to confirm the effectiveness of our method, four
systems were compared.
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(a) Conventional vs Original. (b) Proposed vs Original.

(c) Proposed vs Prop Dur. (d) Proposed vs Prop F0

Figure 4: Preference scores for the listening intelligibility based on subjective evaluations.

• Conventional: DNN-based speech synthesis system us-
ing trajectory training

• Prop Dur: Conventional + “Duration model of a per-
son with hearing loss was modified in Eq. (8)”

• Prop F0: Conventional + “F0 modification based on
section 4.1”

• Proposed: Prop Dur + Prop F0

In Conventional, input features consisted of 395 features,
which comprised 386 binary and 9 numeric features. Binary
features were derived from categorical linguistic contexts in-
cluding quinphone identities, accent type, position of phone,
mora, word, and so on. Numeric features include frame position
information. Output features consisted of 50 mel-cepstrum co-
efficients, log-F0, and 25 band-filtered aperiodicity, their deltas
and accelerations coefficients, and a voiced/unvoiced value (3 +
(50 + 25 + 1) + 1 = 229). Input features were normalized to the
range 0.0-1.0 based on min-max and output features were nor-
malized to zero mean and unit variance. To reduce the training
cost, silence frames were removed from the training data of a
person with hearing loss. The architecture of the networks was
4-hidden-layers, with each hidden layer containing 700 units.
The sigmoid activation function was used for hidden layers,
and the linear activation function was used for the output layer.
In order to complement some consonant parts of a person with
hearing loss, the consonants /s, sh, k, t, ts, z, ch/ were replaced
by those of a physically unimpaired person.

In order to evaluate the models, we evaluated the listening
intelligibility and the speaker similarity by listening to voices

recorded and synthesized under the five conditions (original
speech, Conventional, Prop Dur, Prop F0, Proposed). A
total of 9 Japanese speakers took part in the listening test us-
ing headphones. For speaker similarity, a DMOS (Degradation
Mean Opinion Score) test was performed. In the DMOS test
[20], the original speech signal was used as the reference signal
and the option score was set to a 5-point scale (5: degrada-
tion is inaudible, 4: degradation is audible but not annoying, 3:
degradation is slightly annoying, 2: degradation is annoying, 1:
degradation is very annoying). For the listening intelligibility, a
paired comparison test was carried out, where each subject lis-
tened to pairs of speech signals converted by two methods, and
then selected which sample was more intelligible.

5.2. Experimental results

Fig. 4 shows the preference score on the listening intelligibility,
where the error bar shows a 95% confidence score. As shown
in Fig. 4, our proposed method obtained a higher score than the
original recorded speech signal, Prop F0 and Prop Dur. The
synthesized speech of Conventional is less intelligible than the
original recorded speech, but the synthesized speech of Pro-
posed is more intelligible than the original speech signal and
Conventional. Also, as shown in Fig. 4 (c) and (d), the modifi-
cation of both the F0 and duration model will result in synthe-
sizing more intelligible speech signals.

Fig. 5 shows the results of the DMOS testing on speaker
similarity, where the error bars show a 95% confidence score.
As shown in Fig. 5, the synthesized voice from Conventional is
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Figure 5: Speaker similarity to the hearing loss person based
on subjective evaluations.

the most similar to the original voice of the person with hearing
loss. Also, it was confirmed that the speaker individuality of a
person with hearing loss was lost when using features of a phys-
ically unimpaired person. The DMOS score of the proposed
method was 3.19 (4: degradation is audible but not annoying,
3: degradation is slightly annoying) and this means speaker in-
dividuality is slightly annoying but preserved.

Therefore, from Figs. 4 and 5, it is confirmed that our pro-
posed method generates synthesized signals that are intelligible
and include the individuality of a person with hearing loss.

6. Conclusions
In this paper we have proposed a text-to-speech synthesis
method using deep neural networks for a person with hearing
loss. In our method, to generate more intelligible synthesized
sounds while preserving the individuality of a person with hear-
ing loss, a novel combination approach of deep neural networks
was employed. The F0 features of a person with hearing loss
were modified using those of a physically unimpaired person.
The duration model of a physically unimpaired person was used
to modify the model of a person with hearing loss. In order
to complement some consonant parts of a person with hearing
loss, the consonant parts were replaced by those of a physically
unimpaired person. The experimental results showed that our
method was highly effective in improving the listening intelligi-
bility of speech spoken by a person with hearing loss. In future
research, we will complement the vowel parts of the spectral
parameters in the training part.
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Abstract
Besides noise reduction, an important objective of a binaural
speech enhancement algorithm is the preservation of the bin-
aural cues of both the desired speech source as well as the un-
desired noise in order to preserve the spatial impression of the
acoustic scene for the listener. Recently, it has been shown for
the binaural MVDR beamformer with partial noise estimation
(MVDR-N) that by combining head-mounted hearing devices
with an external microphone it is possible to improve the noise
reduction performance while achieving the same binaural cue
preservation. While the relative positions of the head-mounted
microphones can be assumed to be stationary this assumption
does not hold for the external microphone, which can change
its relative position due to head movements or direct movement
of the listener or the external microphone. In this paper, we
compare the influence of different methods for estimating the
relative transfer functions of the desired speech source between
the head-mounted microphones and the external microphone on
the noise reduction and binaural cue preservation performance
of the binaural MVDR-N beamformer.

Index Terms: binaural cues, noise reduction, external micro-
phone, interaural coherence, relative transfer functions

1. Introduction
Noise reduction algorithms for head-mounted hearing devices
(e.g., hearing aids) are crucial to improve speech quality and
intelligibility in background noise. Binaural devices, consist-
ing of one or more microphones on each side of the head of the
listener, are able to exploit not only spectral but also spatial in-
formation on both sides of head [1–3]. Besides noise reduction,
preserving the binaural cues of all present sound sources is an
important task of a binaural noise reduction algorithm in order
to ensure that the listener’s spatial impression is not distorted by
the algorithm.

For a single desired speech source, the binaural multi-
channel Wiener filter (MWF) [2, 4] has been shown to preserve
the binaural cues of the desired speech source. However, it
typically distorts the binaural cues of the noise, such that the
residual noise is perceived as coming from the same direction
as the desired speech source which is obviously undesired. As
an extension, the binaural MWF with partial noise estimation
(MWF-N) has been proposed [2,4,5], which aims at preserving
the speech component and a scaled version of the noise compo-
nent in the reference microphones of the left and the right hear-
ing device. It has been shown that the mixing parameter in the

This work was supported in part by the Cluster of Excellence 1077
“Hearing4All”, funded by the German Research Foundation (DFG),
and by the joint Lower Saxony-Israeli Project ATHENA.

binaural MWF-N allows to trade off noise reduction and binau-
ral cue preservation performance of the noise component [4].

In this paper we consider the binaural minimum variance
distortionless response (MVDR) beamformer with partial noise
estimation (MVDR-N) [2, 4–6], which can be considered as a
special case of the binaural MWF-N only performing spatial
processing. Recently, the use of one or more external micro-
phones (eMics) in combination with head-mounted hearing de-
vices (HHDs) have been explored [7–13]. It has been shown
that using an eMic can increase both noise reduction and binau-
ral cue preservation performance, depending on the position of
the eMic [10, 12].

To implement the binaural MVDR beamformer, an estimate
of the relative transfer functions (RTFs) of the desired speech
source between all microphones and the reference microphones
on both HHDs are required. Instead of using reverberant RTFs,
one can also use anechoic RTFs. When an estimate of the
direction-of-arrival (DOA) of the desired speech source is avail-
able these anechoic RTFs can be easily constructed for the head-
mounted microphones, e.g., based on measurements or head
models. However, even when the DOA of the desired speech
source (relative to head) is known, this can not be used to com-
pute the (anechoic or reverberant) RTF between the reference
microphones and the eMic, since the position of the eMic is not
known. Hence, the (anechoic or reverberant) RTF needs to be
estimated from the microphone signals.

In this paper, we investigate the influence of three dif-
ferent RTF estimation methods [14–17] on the noise reduc-
tion and binaural cue preservation performance of the binaural
MVDR-N beamformer for a scenario with one desired speech
source surrounded by diffuse multi-talker noise in a reverberant
environment. As will be seen, the so-called covariance whiten-
ing [14, 15, 17] outperforms the others in terms of noise reduc-
tion and binaural cue preservation performance.

2. Configuration and notation
2.1. Signal model

Consider the multiple-input binaural-output (MIBO) system de-
picted in Fig. 1, consisting of a HHD with ML microphones on
the left side of the head, a HHD with MR microphones on the
right side of the head and an additional eMic, located some-
where else in the room at an unknown position. The m-th mi-
crophone signal in the left HHD YL,m(ω) can be written in the
frequency-domain as

YL,m(ω) = XL,m(ω) +NL,m(ω), m = 1, . . . ,ML, (1)

with XL,m(ω) the speech component and NL,m(ω) the noise
component. The m-th microphone signal in the right HHD
YR,m(ω) can be written similarly. The eMic signal Ye(ω) can
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be written as

Ye(ω) = Xe(ω) +Ne(ω), (2)

with Xe(ω) the speech component and Ne(ω) the noise com-
ponent in the eMic signal. For conciseness, we will omit the
frequency variable ω in the remainder of the paper whenever
possible. All microphone signals can be stacked in an M -
dimensional vector, with M = ML +MR + 1, as

y = [YL,1 . . . YL,ML YR,1 . . . YR,MR Ye]
T , (3)

which can be written as

y = x + n, (4)

where the vectors x and n are defined similarly as (3).
For a single desired speech source the speech vector x is

given by

x = aS, (5)

where the vector a contains the acoustic transfer functions
(ATFs) between the desired speech source and all microphones
and S is the (dry) speech signal. Please note that in the time-
domain the vector a corresponds to the room impulse responses
(RIRs) between the desired speech source and all microphones
and hence includes reverberation.

Without loss of generality, we define the first microphone
of both HHDs as the reference microphones. For ease of nota-
tion, the reference microphone signals YL,1 and YR,1 are further
denoted as YL and YR and can be written as

YL = eTLy, YR = eTRy, (6)

where eL and eR denote M -dimensional zero vectors with
eL(1) = 1 and eR(ML + 1) = 1. Similarly, the eMic sig-
nal can be written as Ye = eTe y, with ee = [0 . . . 1]T . Using
(6), the reference microphone signals can be written as

YL = ALS︸ ︷︷ ︸
XL

+NL, YR = ARS︸ ︷︷ ︸
XR

+NR, (7)

where AL = eTLa and AR = eTRa denote the ATFs between
the reference microphones and the desired speech source. The
anechoic ATFs (not including reverberation) are denoted as ĀL
and ĀR. The RTF vectors for the left and the right HHD, relat-
ing the ATF vector a to the reference microphones [15, 16], are
defined as

hL =
a

AL
, hR =

a

AR
. (8)

The speech and noise correlation matrices are given by

Rx = E
{

xxH
}

= ΦsaaH , (9)

Rn = E
{

nnH
}
, (10)

with E {·} the expectation operator, H the conjugate transpose
and Φs = E

{
|S|2

}
the power spectral density (PSD) of the

speech signal. The noise correlation matrix is assumed to be
full rank and hence invertible. By assuming statistical indepen-
dence between x and n, the correlation matrix of the micro-
phone signals can be written as

Ry = Rx + Rn. (11)

The (binaural) output signals of the left and the right HHD are
obtained by filtering all microphone signals, including the ex-
ternal microphone signal, with the complex-valued filter vectors
wL and wR, respectively, i.e.,

ZL = wH
L y, ZR = wH

Ry. (12)

wL wR

...
...

YL,ML

YL,2

YL,1

YR,MR

YR,2

YR,1

ZL ZR

Ye eMic

left HHD right HHD

Figure 1: MIBO system consisting of two head-mounted hearing
devices and an external microphone

The speech component in the output signals is given by Zx,L
and Zx,R.

2.2. Binaural cues

In addition to monaural cues, binaural cues are used by the lis-
tener to localize sound sources and to get a sense of the sur-
rounding sound field [18, 19]. For coherent (directional) sound
sources the most descriptive binaural cues are the interaural
level difference (ILD) and the interaural time difference (ITD).
The interaural coherence (IC) is important for source localiza-
tion in multi-source and reverberant environments since it de-
termines the reliability of the ILD and ITD cues [19, 20].

The input interaural transfer function (ITF) of the speech
component is defined as

ITFin
x =

E {XLX∗
R}

E {|XR|2}
=

eTLRxeR
eTRRxeR

. (13)

The output ITF of the speech component is similarly defined as

ITFout
x =

E
{
Zx,LZ

∗
x,R

}

E {|Zx,R|2}
=

wH
L RxwR

wH
RRxwR

. (14)

The input ILD of the speech component is defined as the power
ratio of the speech component in the left and the right HHD [4],
i.e.,

ILDin
x =

E
{
|XL|2

}

E {|XR|2}
=

eTLRxeL
eTRRxeR

. (15)

The output ILD of the speech component is similarly defined as

ILDout
x =

E
{
|Zx,L|2

}

E {|Zx,R|2}
=

wH
L RxwL

wH
RRxwR

. (16)

The ITD can be calculated from the ITF as [4]

ITD =
∠ITF

ω
, (17)

with ∠ denoting the phase. The input noise IC is defined as

ICin
n =

eTLRneR√
(eTLRneL)(eTRRneR)

. (18)

The output noise IC is similarly defined as

ICout
n =

wH
L RnwR√

(wH
L RnwL)(wH

RRnwR)
. (19)

The (real-valued) magnitude-squared coherence (MSC) is de-
fined as MSC = |IC|2.
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3. Binaural noise reduction
In this section we introduce a binaural noise reduction approach
that uses all microphones to spatially filter the microphone in-
puts. The binaural MVDR-N beamformer [2, 4–6] minimizes
the output noise PSD while preserving the speech component in
the reference microphone signals (and hence the binaural cues
of the speech component) and a scaled version of the noise com-
ponent in the reference microphone signals. The constraint op-
timization problem for the left filter can be formulated as

min
wL

E
{
|wH

L n− ηNL|2
}

s.t. wH
L a = AL. (20)

The solution for the left filter is given by [6, 21]

wη,L = (1− η)

w0,L︷ ︸︸ ︷
R−1
n a

aHR−1
n a

A∗
L +ηeL, (21)

= (1− η)
R−1
n hL

hHLR−1
n hL

+ ηeL, (22)

with 0 ≤ η ≤ 1 a real-valued mixing parameter. The solu-
tion for the right filter is similar to (22) by substituting R for
L. Using (22) in (12), the output of the binaural MVDR-N
beamformer can be interpreted as a mixture between the bin-
aural MVDR beamformer output (scaled with 1 − η) and the
(noisy) reference microphone signal (scaled with η).

For η = 0 the binaural MVDR-N beamformer is equal to
the binaural MVDR beamformer w0,L [2,3,22] and hence pre-
serves the ILD and ITD cues of the desired speech source [4].
However, it has been shown in [6] that for the binaural MVDR
beamformer the output noise MSC is equal to 1 and hence the
surrounding noise field is perceived as coming from the same
direction as the desired speech source. For η = 1 the binau-
ral MVDR-N beamformer output is equal to the reference mi-
crophone signals in (6) and hence preserves the binaural cues
of both the desired speech source and the noise component,
although no noise reduction is achieved. Hence, the binaural
MVDR-N beamformer trades off noise reduction against binau-
ral cue preservation of the noise component using the mixing
parameter η.

Since accurately estimating the ATF vector a is known to
be difficult [23], several methods for estimating the RTF vectors
hL and hR have been proposed [14–17] and hence the usage of
(22) is preferred. If all microphone positions are known and
a reliable DOA estimation is available, one can also use mea-
sured [24] or simulated [25] anechoic RTF vectors. While this
is a reasonable (and robust) approach when only using the head-
mounted microphones, the exact position of the eMic is usually
not known. Hence, at least for the eMic, other methods, e.g., es-
timated RTFs between the reference microphones and the eMic
need to be considered.

Due to robustness, we use anechoic RTFs for the head-
mounted microphones (assuming the DOA θ to be known) and
estimated RTFs only for the eMic, i.e.,

h̃L =

[
h̄L(θ)
He,L

]
, h̃R =

[
h̄R(θ)
He,R

]
(23)

where h̄L(θ) and h̄R(θ) denote the ML- and MR-dimensional
anechoic (measured or simulated) RTF vectors which depend
on the DOA θ for the left and the right HHD, respectively, and
He,L and He,R denote the estimated (anechoic or reverberant)
RTFs between the HHD reference microphones and the eMic.
The construction of the RTF vectors is schematically depicted

y

DOA θ

RTF

h̄L(θ), h̄R(θ)

He,L, He,R

h̃L, h̃R

Figure 2: Proposed construction of the RTF vectors

in Fig. 2.
By using anechoic RTFs for both the head-mounted micro-

phones and the eMic the RTF vectors are connected by a simple
factor, i.e., h̃L = h̃R

ĀL
ĀR

and hence are parallel. This leads to
the aforementioned mapping of the noise component to the po-
sition of the desired speech source and hence the output noise
MSC being equal to 1. By mixing anechoic and reverberant
RTFs, i.e., estimating reverberant RTFs for the eMic, the RTF
vectors are not parallel, which leads to partial cue preservation
of the noise component even when the mixing parameter η is
set to 0 as will be seen in the experimental results in Section 5.

4. RTF estimation methods
In this section we describe three different methods to estimate
the RTFs He,L and He,R between the head-mounted reference
microphones and the eMic which are then used in (23). Al-
though only the estimators for He,L are discussed, the estima-
tors forHe,R can again simply be obtained by substitutingR for
L. Using the speech correlation matrix in (9), the RTF between
the left reference microphone and the eMic is given by

He,L =
eTe RxeL
eTLRxeL

=
Ae
AL

. (24)

4.1. Biased approach

Assuming a reasonable large SNR, the speech correlation ma-
trix in (24) can simply be replaced by the (noisy) correlation
matrix of the microphone signals Ry in (11), leading to the bi-
ased estimator

Hb
e,L =

eTe RyeL
eTLRyeL

=
E {YeY ∗

L}
E {|YL|2}

(25)

Generally, by using the biased estimator in (25) to estimate
Hb
e,L and Hb

e,R, the RTF vectors in (23) are not parallel.

4.2. MVDR pre-processed RTF estimation

An alternative approach to estimate the RTFs was proposed
in [13], where it was proposed to pre-process the head-mounted
microphones using an MVDR beamformer. The binaural
MVDR beamformer only using the HHDs can be written in
terms of the anechoic RTFs vectors h̄L(θ) and h̄R(θ) as

wH,L =

[
R−1

n,Hh̄L(θ)

h̄H
L

(θ)R−1
n,Hh̄L(θ)

0

]T
, (26)

where Rn,H is the (M − 1)× (M − 1)-dimensional noise cor-
relation matrix only using the head-mounted microphones. The
MVDR pre-processed (biased) RTF estimate is then given by

Hpp
e,L =

E
{
Yey

HwH,L

}

E
{
wH

H,LyyHwH,L

} =
eTe RywH,L

wH
H,LRywH,L

(27)

By substituting wH,R in (27) it can easily be shown thatHpp
e,L =

Hpp
e,R

ĀR
ĀL

and hence, by using the pre-processed estimator in
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Figure 3: Input noise MSC generated by four loudspeakers

(27) the RTF vectors in (23) are parallel, what leads to the map-
ping of the residual noise to the position of the desired speech
source.

4.3. Covariance whitening

Covariance whitening is a well-known approach to estimate
RTFs [14, 15, 17]. The noise correlation matrix can be factor-
ized into a lower triangular matrix L and its conjugate transpose
LH using the Cholesky decomposition, i.e., [15, 17]

Rn = LLH , R−1
n = L−HL−1. (28)

Using (28), the pre-whitened correlation matrix of the micro-
phone signals is given by

Rw
y = L−1RyL

−H . (29)

The eigenvalue decomposition (EVD) of this pre-whitened ma-
trix is given by

Rw
y = VΛVH , (30)

with V anM×M -dimensional matrix containing the eigenvec-
tors and Λ an M ×M -dimensional diagonal matrix containing
the eigenvalues. Using the eigenvector vmax that corresponds
to the largest eigenvalue, the RTF can be estimated as [15, 17]

Hcw
e,L =

eTe Lvmax

eTLLvmax
(31)

Compared to the MVDR pre-processed approach in Section 4.2,
the covariance whitening approach aims at estimating the rever-
berant RTFs and hence, the RTF vectors in (23) are not parallel.

5. Experimental results
5.1. Setup

All signals were recorded in a laboratory with variable acous-
tics (7 m × 6 m × 2.7 m) where the reverberation time was
set to about 350 ms. We used two behind-the-ear (BTE) hear-
ing aid dummies each having two microphones with an inter-
microphone distance of about 7.6 mm, and an external micro-
phone, i.e., M = 5 microphones in total. The hearing aids
were placed on the ears of a head-and-torso simulator (HATS)
that was placed in the middle of the room. The desired speech
source was played back by a loudspeaker placed at about 2 m
distance to the middle of the head at an angle of about 35◦,
i.e., on the right side of the HATS. The background multi-talker
noise was realized by four loudspeakers in the corners of the
room that were facing the corners and playing back uncorre-
lated multi-talker noise. Fig. 3 shows the measured input noise
MSC using the first microphone of each hearing aid as refer-
ence microphone. The speech and noise signals were recorded
separately such that we were able to mix them at different in-
put SNRs afterwards. The external microphone was placed at
0.5 m distance to the desired speech source parallel to the view-

iSNRin
R [dB] -10 -5 0 5

iSNRin
L [dB] -14.5 -9.5 -4.5 0.5

iSNRin
e [dB] -2.5 2.5 7.5 12.5

Table 1: Input intelligibility-weighted SNRs

ing direction of the HATS.
For the anechoic RTF vectors h̄L(θ) and h̄R(θ) used in

(23) we used the database presented in [24] who used simi-
lar hearing aid dummies in an anechoic room. We assumed
a DOA of 35◦ and chose the respective measurements from
the database. The processing was done at a sampling rate of
16 kHz using an STFT-based weighted overlap-add framework
with a frame length of 16 ms (256 samples) and a frame shift
of 50%. The input signals consisted of 2 s noise-only followed
by 18 s of speech-plus-noise. The noise correlation matrix R̂n

was estimated during the noise-only part, whereas the micro-
phone signal correlation matrix R̂y was estimated during the
speech-plus-noise part. The RTFs between the reference micro-
phones and the external microphone were estimated using R̂n

and R̂y , cf. Section 4. The obtained filters in (22) were applied
to the complete signal

We evaluated four different filters, namely

• the binaural MVDR beamformer in (26) only using the
head-mounted microphones (wH)

• the binaural MVDR-N beamformer in (22) using either
the biased RTF estimate in (25) (wb

η), the pre-processed
RTF estimate in (27) (wpp

η ) or the covariance whitening
RTF estimate in (31) (wcw

η )

As objective performance measures we used the
intelligibility-weighted SNR (iSNR) [26] improvement
for the left and the right hearing aid relative to the reference
microphone signals, the MSC error comparing the input noise
MSC (cf. Fig. 3) with the output noise MSC, and the ILD and
ITD errors comparing the input speech ILD and ITD with the
output speech ILD and ITD. All measures have been averaged
over all frequencies. We set up two experiments where we
changed either the input iSNR or the mixing paramter η.

5.2. Experiment 1

In the first experiment we varied the input iSNR in the right
reference microphone (iSNRin

R ) from −10 dB to 5 dB in steps
of 5 dB. This led to the input iSNRs for the left reference
microphone (iSNRin

L ) and the eMic (iSNRin
e ) as shown in Table

1. The mixing parameter was set to η = 0 such that the filter in
(22) is equal to the binaural MVDR beamformer w0,L.

The results are depicted in Fig. 4. As can be observed,
the performance of the filter wH does not depend on the input
iSNR, whereas for the filters that exploit an RTF estimate be-
tween the reference microphones and the eMic the input iSNR
influences the performance. The binaural MVDR beamformer
using the covariance whitening RTF estimate wcw

η clearly out-
performs all other filters in all objective measures.

It can be observed especially for the right iSNR improve-
ment that the covariance whitening RTF estimate is less affected
by a low input iSNR. For all values of the right input iSNR the
covariance whitening RTF estimate leads to the highest output
iSNR for both the left and the right side. Further, the filter using
the pre-processed RTF estimate wpp

η always leads to a higher
output iSNR than the filter using the biased RTF estimate wb

η .
The filter wH always leads to the lowest output iSNR.

For the MSC error of the noise component the filters using
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Figure 4: Results of the first experiment where the input iSNR
in the right reference microphone has been changed and the
mixing paramter has been set to η = 0

parallel RTF vectors (wH and wpp
η ) lead to a constant value,

whereas the filters using non-parallel RTF vectors (wb
η and

wcw
η ) lead to smaller errors. The MSC error of the noise com-

ponent decreases with increasing right input iSNR for the filter
using the biased estimate wb

η and increases for the filter using
the covariance whitening estimate wcw

η . While wcw
η outper-

forms wb
η for low right input iSNRs, the biased approach leads

to the smallest MSC error for the highest right input iSNR and
hence outperforms all other filters in this condition.

The ILD error of the speech component does not vary much
with changes of the right input iSNR, but wcw

η outperforms all
other filters in all conditions.

The ITD error of the speech component is constant over
all conditions for the filters using the parallel RTF vectors (wH

and wpp
η ) and decreasing with increasing right input iSNR for

the filters using non-parallel RTF vectors (wb
η and wcw

η ), while
wcw
η outperforms wb

η .
In conclusion, it appears that even when using anechoic

RTFs for the head-mounted microphones, using reverberant
RTF estimates between the reference microphones and the ex-
ternal microphone (as in wb

η and wcw
η ) may lead to slight binau-

ral cue preservation of the noise without even applying partial
noise estimation.

5.3. Experiment 2

In the second experiment we set the input iSNR in the right
reference microphone to −5 dB (cf. Table 1) and varied the
mixing parameter η in (22) from 0 to 0.2 in steps of 0.05. The
results for the second experiment are depicted in Fig. 5. The
binaural MVDR beamformer using only the head-mounted mi-
crophones wH is obviously not affected by the mixing param-
eter η but yields a reference of the filter performance without
incorporating an eMic.

In terms of iSNR improvement the performance of the
binaural MVDR-N beamformer using an external microphone
is better than the binaural MVDR beamformer only using the
head-mounted microphones for small values of η. This effect
decreases with increasing η, i.e., the output iSNR of the binau-
ral MVDR-N beamformer is decreasing with η. For low values
of η the filter using the covariance whitening RTF estimate wcw

η

clearly outperforms all other filters, while for larger η the dis-
tance to the other filters decreases. Hence, it appears that η
has higher influence on wcw

η than on wb
η and wpp

η . The pre-
processing done in wpp

η proves beneficial for all values of η
compared to the filter using the biased estimate wb

η .
The MSC error of the noise component is decreasing with

η for the binaural MVDR-N beamformer, which is intuitively
clear because more and more of the noisy reference microphone
signal is added to the beamformer output. The filter wcw

η clearly
outperforms all other filters, while wb

η only slightly outperforms
wpp
η for very small values of η.

The ILD and ITD errors of the speech component are de-
creasing with increasing η for the binaural MVDR-N beam-
former. Please note, that in theory the ILD and ITD errors of the
speech component are equal to 0 but due to the use of anechoic
RTFs these errors occur. The filter wcw

η again outperforms all
other filters, while wpp

η outperforms wb
η in terms of ILD error,

and wb
η outperforms wpp

η in terms of ITD error.

6. Conclusions
In this paper we investigated the influence of three different RTF
estimators that estimate the RTFs between the reference micro-
phones of two head-mounted hearing devices and an external
microphone on the noise reduction and binaural cue preser-
vation performance of the binaural MVDR-N beamformer us-
ing recorded signals. The estimator using so-called covariance
whitening outperformed the other estimators. Additionaly, it
appeared that using anechoic RTFs for the head-mounted mi-
crophones and reverberant RTFs for the external microphone
leads to slight binaural cue preservation without even applying
partial noise estimation.
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