The Hitachi/JHU CHiME-5 system: Advances in speech recognition for everyday home environments using multiple microphone arrays

Naoyuki Kanda1, Rintaro Ikeshita1, Shota Horiguchi1, Yusuke Fujita1, Kenji Nagamatsu1, Xiaofei Wang2, Vimal Manohar2, Nelson Enrique Yalta Soplin2, Matthew Maciejewski2, Szu-Jui Chen2, Aswin Shanmugam Subramanian2, Ruizhi Li2, Zhiqi Wang2, Jason Naradowsky2, L. Paola Garcia-Perera2, Gregory Sell2
Step-by-Step Improvements for Dev

Word error rate (%)

- Baseline
- Data Augmentation
- CNN-TDNN-LSTM (1ch)
- CNN-TDNN-RBiLSTM (1ch)
- 4ch Input
- LF-sMBR
- WPE
- CGMM-Mask-MVDR
- Mask-NN-MVDR
- AM combination
- Frontend combination
- Frontend combination
- Hypothesis deduplication
- RNN-LM
- Array combination

Single-array

Multiple-array

AM
Frontend
Decoding
LM
Acoustic Model Training Pipeline

Step 1.
GMM-AM
- 1ch worn L
- 1ch worn R
- 1ch worn L+R

Step 2.
Alignment & Cleanup
- 1ch worn L+R
- GMM
- Alignment & Cleanup
- “Cleaned” 1ch worn L+R & phone-state alignment
- Full set
- Alignment Expansion
- “Cleaned” full set & phone-state alignment

Step 3.
1ch AM
- “Cleaned” full set & phone-state alignment
- iVector Training
- iVector Extraction
- LF-MMI AM Training
- LF-MMI AM (1ch)
- Acoustic Feature Extraction

Step 4.
4ch AM
- LF-MMI AM (1ch)
- Add 4ch input branch
- LF-MMI AM (4ch)
- Weighted iVector Extraction
- LF-MMI AM Training
- LF-MMI AM (4ch)
- LF-sMBR AM Training [1]
- LF-sMBR AM (4ch)

Acoustic Model Training Pipeline

Step 1. GMM-AM
1ch worn L
1ch worn R
1ch worn L+R

- GMM (mono) → GMM (tri) → GMM (LDA-MLLT) → GMM (SAT) → GMM

Data augmentation
40h -> 4,500h

Step 2. Alignment
1ch worn L+R

- Alignment & Cleanup
- “Cleaned” 1ch worn L+R & phone-state alignment

Step 3. 1ch AM
“Cleaned” full set & phone-state alignment

- iVector Training → iVector Extraction → LF-MMI AM Training → LF-MMI AM (1ch)
- Acoustic Feature Extraction

Step 4. 4ch AM
Array 1(4ch) → Array 6(4ch)

- Add 4ch input branch
- Weighted iVector Extraction → LF-MMI AM Training → LF-MMI AM (4ch)
- Acoustic Feature Extraction

Effect of data augmentation with baseline AM

<table>
<thead>
<tr>
<th>Data</th>
<th>Data Augmentation</th>
<th>Training Epoch</th>
<th>Worn-Dev</th>
<th>Ref-Array-Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, R, L+R</td>
<td>✓</td>
<td>4</td>
<td>44.05</td>
<td>79.65</td>
</tr>
<tr>
<td>L, R, L+R</td>
<td>✓</td>
<td>4</td>
<td>44.49</td>
<td>78.72</td>
</tr>
<tr>
<td>L, R, L+R</td>
<td>✓</td>
<td>4</td>
<td>48.92</td>
<td>78.51</td>
</tr>
<tr>
<td>L, R, L+R</td>
<td>✓</td>
<td>2</td>
<td>45.82</td>
<td>77.26</td>
</tr>
<tr>
<td>L, R, L+R</td>
<td>✓</td>
<td>1</td>
<td>45.37</td>
<td>76.31</td>
</tr>
</tbody>
</table>

(*) Reverb. & noise perturbation was applied only for worn microphone data.

<table>
<thead>
<tr>
<th>Worn (Raw, CH1)</th>
<th>Array (BeamFormIt)</th>
<th>Speed & Volume</th>
<th>Reverb. & Noise(*)</th>
<th>Bandpass</th>
</tr>
</thead>
<tbody>
<tr>
<td>L, R, L+R</td>
<td>1</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L, R, L+R</td>
<td>1</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L, R, L+R</td>
<td>1 ... 6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L, R, L+R</td>
<td>1 ... 6</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>L, R, L+R</td>
<td>1 ... 6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Speed: 0.9, 1.0, 1.1
Volume: 0.125 – 2.0
Reverberation: Generate impulse responses of simulated rooms by image method. Follow the settings of {small, medium}-size rooms in [1].
Noise: Add non-speech region of array data with SNR of {20,15,10,5, 0}
Bandpass: Randomly-selected frequency band was cut off. (leave at least 1,000 Hz band within the range of less than 4,000 Hz)

Acoustic Model Training Pipeline

Step 1.
GMM-AM

1 ch worn L
1 ch worn R
1 ch worn L+R

- GMM (mono) → GMM (tri) → GMM (LDA-MLLT) → GMM (SAT) → GMM

Step 2.
Alignment

1 ch worn L+R

- GMM → Alignment & Cleanup → “Cleaned” 1 ch worn L+R & phone-state alignment → Alignment Expansion → “Cleaned” full set & phone-state alignment

Step 3.
1 ch AM

- “Cleaned” full set & phone-state alignment → iVector Training → iVector Extraction → LF-MMI AM Training → LF-MMI AM (1 ch)

Step 4.
4 ch AM

- LF-MMI AM (1 ch) → Add 4 ch input branch → LF-MMI AM (4 ch)

4 ch AM

- Array 1(4 ch)
 - CH1 → Weighted iVector Extraction → LF-MMI AM Training → LF-MMI AM (4 ch)

- Array 6(4 ch)
 - CH1, 2, 3, 4 → Acoustic Feature Extraction → LF-MMI AM Training

4ch CNN-TDNN-RBiLSTM

\[
\log |x_{i,f,t}| \\
i \in \{1, 2, 3, 4\}
\]

\[
\cos(\angle(x_{i,f,t}) - \angle(x_{1,f,t})) \quad (i = 2, 3, 4),
\sin(\angle(x_{i,f,t}) - \angle(x_{1,f,t})) \quad (i = 2, 3, 4).
\]
4ch CNN-TDNN-RBiLSTM

(1) LF-MMI update

log $|x_{i,f,t}|$

$i = 1, 2, 3, 4$
4ch CNN-TDNN-RBiLSTM

\[
\log |x_{i,f,t}| \\
 i = 1, 2, 3, 4
\]

(2) LF-MMI update

\[
\cos(\angle(x_i,f,t) - \angle(x_{1,f,t})) \quad (i = 2, 3, 4), \\
\sin(\angle(x_i,f,t) - \angle(x_{1,f,t})) \quad (i = 2, 3, 4).
\]
4ch CNN-TDNN-RBiLSTM

4ch-branch:

\[
\log |x_{i,f,t}| \\
\quad i (= 1, 2, 3, 4)
\]

(3) LF-sMBR update

\[
\begin{align*}
\cos(\angle(x_{i,f,t}) - \angle(x_{1,f,t})) & \quad (i = 2, 3, 4), \\
\sin(\angle(x_{i,f,t}) - \angle(x_{1,f,t})) & \quad (i = 2, 3, 4).
\end{align*}
\]
Step-by-Step Improvements for Dev

![Graph showing improvements in word error rate over single-array and multiple-array systems.](Image)

- **AM (Acoustic Model)**
- **Frontend**
- **Decoding**
- **LM (Language Model)**

Single-array vs. **Multiple-array** systems:
- **Baseline**
- **Data Augmentation**
- **CNN-TDNN-LSTM (1ch)**
- **CNN-TDNN-RBiLSTM (1ch)**
- **4ch Input**
- **LF-sMBR**
- **WPE**
- **CGMM-Mask-MVDR**
- **Mask-NN-MVDR**
- **AM combination**
- **Frontend combination**
- **Hypothesis deduplication**
- **Array combination**

© Hitachi, Ltd. 2018. All rights reserved.
Complex Gaussian Mixture Model

• 3-class mixture: target, non-target, and noise

\[y_f(t) \sim \alpha_{tgt} \mathcal{N}_\mathbb{C}(0, v_f^{tgt}(t)R_f^{tgt}) + \alpha_{nontgt} \mathcal{N}_\mathbb{C}(0, v_f^{nontgt}(t)R_f^{nontgt}) + \alpha_{noise} \mathcal{N}_\mathbb{C}(0, v_f^{noise}(t)R_f^{noise}) \]

• Mask estimation using EM Algorithm \(\rightarrow\) MVDR-based Beamformer

1. **Train mask estimation (ME) network [1][2]**
 by using mixture of speech (worn non-speaker-overlapped region) and noise (array non-speech region) in the training set

 ![Diagram of Mask Estimation Neural Network]

   ```python
   def gate(x):
       if input.speaker == target_speaker:
           return x
       else:
           return 0
   ```

 (*) we used only non-overlapped regions for adaptation

2. **Speaker adaptation**

 ![Diagram of Speaker Adaptation]

3. Mask inference
Target speaker’s mask is selected only if target speaker’s output value is higher than all other non-targets values.

Example: P01(target) and P02(non-target)
Step-by-Step Improvements for Dev

Word error rate (%)

- **AM**
 - Frontend
 - Decoding

- **Baseline**
- **Data Augmentation**
- **CNN-TDNN-LSTM (1ch)**
- **CNN-TDNN-RBiLSTM (1ch)**
- **4ch Input**
- **LF-sMBR**
- **WPE**
- **CGMM-Mask-MVDR**
- **Mask-NN-MVDR**
- **AM combination**
- **Array combination**
- **RNN-LM**

- **Single-array**
- **Multiple-array**
Language Modeling

- Recurrent neural network based word-LM
 - 2 layer LSTM with 512 nodes, 50% dropout
 - 512 dim embeddings
 - PyTorch implementation

 \[
 = \begin{array}{c|c|c}
 \text{Single-array} & \text{without RNN-LM} & \text{with RNN-LM} \\
 \hline
 \text{Single-array} & 56.40 & 55.15 \\
 \text{Multiple-array} & 54.00 & 52.38 \\
 \end{array}
 \]
 \[
 (* \text{ Results with model combination and hypothesis deduplication })
 \]
Step-by-Step Improvements for Dev

Word error rate (%)

- AM
- Frontend
- Decoding
- LM

Single-array

Multiple-array

- Baseline + Data Augmentation + CNN-TDNN-LSTM (1ch) + CNN-TDNN-RBiLSTM (1ch) + 4ch Input + LF-sMBR + WiFi + CGMM-Mask-MVDR + Mask-NN-MVDR + AM combination + Frontend combination + Hypothesis deduplication + Array combination

© Hitachi, Ltd. 2018. All rights reserved.
Decoding

- Hypotheses combination by N-best ROVER
 - 6 AMs := CNN-TDNN-\{LSTM, BiLSTM, RBiLSTM\} x {3500, 7000} senones
 - 2 Front-ends := Mask Network, CGMM
 - 6 Arrays

We didn’t select array, instead combined hypotheses from each array.

```
| Array1 | Front-end1 | AM1   | Hypothesis_1,1,1 |
| Array1 | Front-end1 | AM2   | Hypothesis_1,1,2 |
| Array2 | Front-end1 | AM3   |                  |
| Array6 | Front-end2 | AM5   | Hypothesis_6,2,5 |
| Array6 | Front-end2 | AM6   | Hypothesis_6,2,6 |
```

Result
Step-by-Step Improvements for Dev

AM

Frontend

Decoding

LM

Multiple-array

Single-array

© Hitachi, Ltd. 2018. All rights reserved.
Hypothesis Deduplication (HD)

- Same words were sometimes recognized for overlapped utterances

<table>
<thead>
<tr>
<th>P05</th>
<th>um</th>
<th>yeah</th>
<th>0.999999</th>
<th>0.858049</th>
</tr>
</thead>
<tbody>
<tr>
<td>P08</td>
<td>can</td>
<td>i</td>
<td>help</td>
<td>with</td>
</tr>
<tr>
<td></td>
<td>0.846968</td>
<td>0.847141</td>
<td>0.753396</td>
<td>0.637141</td>
</tr>
</tbody>
</table>

- Duplicated words with lower confidence were excluded from the hypothesis.
 - HD was applied after ROVER, so precise time boundary could not be used. Minimum edit distance-based word alignment was used to detect word duplication.

<table>
<thead>
<tr>
<th>WER (%) for Dev set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>without HD</th>
<th>with HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-array</td>
<td>56.44</td>
<td>55.15</td>
</tr>
<tr>
<td>1.3% impr.</td>
<td>1.3% impr.</td>
<td></td>
</tr>
<tr>
<td>Multiple-array</td>
<td>53.69</td>
<td>52.38</td>
</tr>
<tr>
<td>1.3% impr.</td>
<td>1.3% impr.</td>
<td></td>
</tr>
</tbody>
</table>

(*) Results with RNN-LM
Final results & Conclusion
Final Results

WER (%) without RNN-LM / with RNN-LM

<table>
<thead>
<tr>
<th>Track</th>
<th>Session</th>
<th>Kitchen</th>
<th>Dining</th>
<th>Living</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-array</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dev</td>
<td>S02</td>
<td>66.37 / 65.13</td>
<td>56.79 / 55.42</td>
<td>50.89 / 49.54</td>
<td>56.40 / 55.15</td>
</tr>
<tr>
<td></td>
<td>S09</td>
<td>55.89 / 55.24</td>
<td>55.94 / 54.37</td>
<td>51.57 / 50.15</td>
<td></td>
</tr>
<tr>
<td>Eval</td>
<td>S01</td>
<td>59.42 / 57.62</td>
<td>44.18 / 41.81</td>
<td>63.85 / 62.33</td>
<td>50.36 / 48.20</td>
</tr>
<tr>
<td></td>
<td>S21</td>
<td>52.11 / 49.68</td>
<td>42.14 / 39.78</td>
<td>46.71 / 44.59</td>
<td></td>
</tr>
<tr>
<td>Multiple-array</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dev</td>
<td>S02</td>
<td>61.05 / 59.31</td>
<td>54.56 / 52.96</td>
<td>50.47 / 48.95</td>
<td>54.00 / 52.38</td>
</tr>
<tr>
<td></td>
<td>S09</td>
<td>51.87 / 50.64</td>
<td>52.46 / 50.69</td>
<td>52.48 / 50.46</td>
<td></td>
</tr>
<tr>
<td>Eval</td>
<td>S01</td>
<td>59.82 / 57.01</td>
<td>43.59 / 41.22</td>
<td>62.28 / 60.67</td>
<td>50.59 / 48.24</td>
</tr>
<tr>
<td></td>
<td>S21</td>
<td>54.70 / 51.59</td>
<td>44.12 / 42.17</td>
<td>45.95 / 43.82</td>
<td></td>
</tr>
</tbody>
</table>
Final Results

WER (%)

<table>
<thead>
<tr>
<th>Track</th>
<th>Session</th>
<th>Kitchen</th>
<th>Dining</th>
<th>Living</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-array</td>
<td>Dev</td>
<td>S02 S09</td>
<td>66.37 / 65.13</td>
<td>56.79 / 55.42</td>
<td>50.89 / 49.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55.89 / 55.24</td>
<td>55.94 / 54.37</td>
<td>51.57 / 50.15</td>
</tr>
<tr>
<td></td>
<td>Eval</td>
<td>S01 S21</td>
<td>59.42 / 57.62</td>
<td>44.18 / 41.81</td>
<td>63.85 / 62.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52.11 / 49.68</td>
<td>42.14 / 39.78</td>
<td>46.71 / 44.59</td>
</tr>
<tr>
<td>Multiple-array</td>
<td>Dev</td>
<td>S02 S09</td>
<td>61.05 / 59.31</td>
<td>54.56 / 52.96</td>
<td>50.47 / 48.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51.87 / 50.64</td>
<td>52.46 / 50.69</td>
<td>52.48 / 50.46</td>
</tr>
<tr>
<td></td>
<td>Eval</td>
<td>S01 S21</td>
<td>59.82 / 57.01</td>
<td>43.59 / 41.22</td>
<td>62.28 / 60.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54.70 / 51.59</td>
<td>44.12 / 42.17</td>
<td>45.95 / 43.82</td>
</tr>
</tbody>
</table>

- Array combination by ROVER worked well for dev, but not effective for eval set.
 - Why? Different types of rooms? Speaker-array distance?

- Anyway, better array combination methods should be pursued.
Our contributions
- Multiple data augmentation
- 4-ch AM with Residual BiLSTM
- Speaker adaptive mask estimation network / CGMM-based beamformer
- Hypothesis Deduplication
- Array combination by ROVER (found not effective for evaluation set)

Our results
- 48.2% WER for evaluation set
- 2nd ranked, with only 2.1 point difference to the best result

Thank you for your attention!
Appendix
Comparison of AM Architectures

<table>
<thead>
<tr>
<th>Model</th>
<th>Input</th>
<th>Training</th>
<th>Worn-Dev</th>
<th>Ref-Array-Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1ch</td>
<td>LF-MMI</td>
<td>45.37</td>
<td>76.31</td>
</tr>
<tr>
<td>CNN-TDNN-LSTM</td>
<td>1ch</td>
<td>LF-MMI</td>
<td>39.22</td>
<td>68.87</td>
</tr>
<tr>
<td>CNN-TDNN-BiLSTM</td>
<td>1ch</td>
<td>LF-MMI</td>
<td>40.04</td>
<td>68.42</td>
</tr>
<tr>
<td>CNN-TDNN-RBiLSTM</td>
<td>1ch</td>
<td>LF-MMI</td>
<td>39.21</td>
<td>67.46</td>
</tr>
<tr>
<td>CNN-TDNN-RBiLSTM</td>
<td>4ch</td>
<td>LF-sMBR [1]</td>
<td>n/a</td>
<td>64.54</td>
</tr>
<tr>
<td>CNN-TDNN-RBiLSTM</td>
<td>4ch</td>
<td>LF-sMBR [1]</td>
<td>n/a</td>
<td>64.25</td>
</tr>
</tbody>
</table>

Comparison of Frontend Processing

<table>
<thead>
<tr>
<th>Front-end for 1ch input</th>
<th>Front-end for 4ch input</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeamFormIt (= Baseline)</td>
<td>Raw</td>
<td>64.28</td>
</tr>
<tr>
<td>Raw</td>
<td>Raw</td>
<td>63.79</td>
</tr>
<tr>
<td>WPE</td>
<td>WPE</td>
<td>63.49</td>
</tr>
<tr>
<td>CGMM-MVDR</td>
<td>WPE</td>
<td>62.53</td>
</tr>
<tr>
<td>Speaker adaptive mask NN-MVDR</td>
<td>WPE</td>
<td>62.09</td>
</tr>
</tbody>
</table>
Decoding

Hypotheses combination by N-best ROVER
- 6 AMs := CNN-TDNN-{LSTM, BiLSTM, RBiLSTM} x {3500, 7000} senones
- 2 Front-ends := Mask Network, CGMM
- 6 Arrays We didn’t select array. Instead we combined hypotheses from each array.

WER (%) for Dev set

<table>
<thead>
<tr>
<th>AM</th>
<th>Array</th>
<th>Frontend</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>MaskNet</td>
<td>62.09</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>MaskNet</td>
<td>58.79</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>MaskNet, CGMM</td>
<td>57.55</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>MaskNet, CGMM</td>
<td>55.08</td>
</tr>
</tbody>
</table>

(*) Results w/o RNN-LM
Thank you